
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 10
Pipes

😷 masks required

2

Topic 2: Multiprocessing - How
can our program create and
interact with other programs?
How does the operating system
manage user programs?

3

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Lecture 9 Today

assign3: implement your own shell!

4

Learning Goals
• Get more practice with using fork() and execvp
• Learn about pipe to create and manipulate file descriptors

5

Plan For Today
• Recap: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

6

Plan For Today
• Recap: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

7

waitpid()
A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on, or -1 to wait on any of our children
• status: where to put info about the child's termination (or NULL)
• options: optional flags to customize behavior (always 0 for now)

The function returns when the specified child process exits
• Returns the PID of the child that exited, or -1 on error (e.g. no child to wait on)
• If the child process has already exited, this returns immediately - otherwise, it blocks
• It's important to wait on all children to clean up system resources

8

execvp()
execvp is a function that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at the given path, completely cannibalizing the current process.
• If successful, execvp never returns in the calling process
• If unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.
• For our programs, path and argv[0] will be the same

execvp has many variants (see man execvp) but we’ll just be using execvp.

9

execvp()
// execvp-demo.c
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
char *args[] = {"/bin/ls", "-l", "/usr/class/cs111/lecture-code",

NULL};
execvp(args[0], args);
printf("This only prints if an error occurred.\n");
return 0;

}

$./execvp-demo
Hello, world!
total 4
drwx------ 2 troccoli operator 2048 Oct 9 16:21 lect5
drwx------ 2 troccoli operator 2048 Oct 13 22:19 lect9

10

Implementing a Shell
How is execvp useful?
• This is the way that we can run other programs
• However, we often don’t want to cannibalize the current process
• Instead: we will usually fork off a child process and call execvp there. The child

process will be consumed, but that’s ok

11

Implementing a Shell
A shell is essentially a program that repeats asking the user for a command and
running that command

How do we run a command entered by the user?
1. Call fork to create a child process
2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid

For assign3, you’ll use this pattern to build your own shell, stsh ("Stanford shell")
with various functionality of real Unix shells.

12

Demo: first-shell-soln.cc

13

Plan For Today
• Recap: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

14

Is there a way that the
parent and child processes

can communicate?
(why is this useful? Shell piping and I/O redirection)

15

Pipes
• How can we let two processes send arbitrary data back and forth?
• A core Unix principle is modeling things as files. Could we use a "file"?
• Idea: a file that one process could write, and another process could read?
• Problem: we don't want to clutter the filesystem with actual files every time

two processes want to communicate.
• Solution: have the operating system set this up for us.

• It will give us two new file descriptors - one for writing, another for reading.
• If someone writes data to the write FD, it can be read from the read FD.
• It's not actually a physical file on disk - we are just using files as an abstraction

16

pipe()
int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors
such that everything written to fds[1]can be read from fds[0]. Returns 0 on
success, or -1 on error.
Tip: you learn to read before you learn to write (read = fds[0], write = fds[1]).

17

pipe()
static const char * kPipeMessage = "this message is coming via a pipe.";
int main(int argc, char *argv[]) {

int fds[2];
pipe(fds);

// Write message to pipe (assuming all bytes written immediately)
write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
close(fds[1]);

// Read message from pipe
char receivedMessage[strlen(kPipeMessage) + 1];
read(fds[0], receivedMessage, sizeof(receivedMessage));
close(fds[0]);
printf("Message read: %s\n", receivedMessage);

return 0;
}

$./pipe-demo
Message read: this message is coming via a pipe.

18

pipe()
pipe can allow processes to communicate! (how?)
• When fork is called, everything is cloned – even the file descriptors, which are

replicated in the child process. This means if the parent creates a pipe and
then calls fork(), both processes can use the pipe!
• E.g. the parent can write to the "write" end and the child can read from the

"read" end
• Because they're file descriptors, there's no global name for the pipe (another

process can't "connect" to the pipe).
• Each pipe is uni-directional (one end is read, the other write)
• Key Idea: read() blocks until the bytes are available or there is no more to read

(e.g. end of file or pipe write end closed). So if one process is reading, it will
wait until the other writes.

19

Interprocess Communication

Illustrations courtesy of Roz Cyrus.

20

Key Idea: because the pipe
file descriptors are duplicated in
the child, we need to close the

2 pipe ends in both the
parent and the child.

21

Interprocess Communication

Illustrations courtesy of Roz Cyrus.

22

Interprocess Communication

Illustrations courtesy of Roz Cyrus.

23

Interprocess Communication

Illustrations courtesy of Roz Cyrus.

24

Interprocess Communication

Illustrations courtesy of Roz Cyrus.

25

Interprocess Communication

Illustrations courtesy of Roz Cyrus.

26

pipe()
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {

int fds[2];
pipe(fds);
size_t bytesSent = strlen(kPipeMessage) + 1;
pid_t pidOrZero = fork();
if (pidOrZero == 0) { // In the child, we only read from the pipe

close(fds[1]);
char buffer[bytesSent];
read(fds[0], buffer, sizeof(buffer));
close(fds[0]);
printf("Message from parent: %s\n", buffer);
return 0;

}
// In the parent, we only write to the pipe (assume everything is written)
close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, NULL, 0);
return 0;

}

27

pipe()
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {

int fds[2];
pipe(fds);
size_t bytesSent = strlen(kPipeMessage) + 1;
pid_t pidOrZero = fork();
if (pidOrZero == 0) { // In the child, we only read from the pipe

close(fds[1]);
char buffer[bytesSent];
read(fds[0], buffer, sizeof(buffer));
close(fds[0]);
printf("Message from parent: %s\n", buffer);
return 0;

}
// In the parent, we only write to the pipe (assume everything is written)
close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, NULL, 0);
return 0;

}

28

pipe()
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {

int fds[2];
pipe(fds);
size_t bytesSent = strlen(kPipeMessage) + 1;
pid_t pidOrZero = fork();
if (pidOrZero == 0) { // In the child, we only read from the pipe

close(fds[1]);
char buffer[bytesSent];
read(fds[0], buffer, sizeof(buffer));
close(fds[0]);
printf("Message from parent: %s\n", buffer);
return 0;

}
// In the parent, we only write to the pipe (assume everything is written)
close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, NULL, 0);
return 0;

}

29

pipe()
This method of communication between processes relies on the fact that file
descriptors are duplicated when forking.
• each process has its own copy of both file descriptors for the pipe
• both processes could read or write to the pipe if they wanted.
• each process must therefore close both file descriptors for the pipe when

finished

This is the core idea behind how a shell can support piping between processes
(e.g. cat file.txt | uniq | sort).

30

Recap
• Recap: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

Lecture 10 takeaway: shells
work by spawning child
processes that call execvp.
Pipes are sets of file descriptors
that let us read/write. We can
share pipes with child processes
to send arbitrary data back and
forth.

