
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 11
Pipes, Continued

😷 masks required

2

Topic 2: Multiprocessing - How
can our program create and
interact with other programs?
How does the operating system
manage user programs?

3

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Lecture 9 Lecture 10 / Today

assign3: implement your own shell!

4

Learning Goals
• Learn about pipe and dup2 to create and manipulate file descriptors
• Use pipes to redirect process input and output

5

Plan For Today
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

6

Plan For Today
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

7

Pipes
• A pipe is (sort of) like an “imaginary file” that we open twice, once for writing

and once for reading. It consists of two file descriptors, one for reading and
one for writing
• Whatever we write to the “write FD” we can read from the “read FD”
• To create these two file descriptors, we call the pipe system call

int pipe(int fds[]);
The pipe system call populates the 2-element array fds with two file descriptors
such that everything written to fds[1] can be read from fds[0]. Returns 0 on
success, or -1 on error.
Tip: you learn to read before you learn to write (read = fds[0], write = fds[1]).

8

pipe() and fork()
• When we call fork(), everything is copied into the child, including the file

descriptors. This means if a parent creates a pipe and then calls fork, the child
can access it, too!
• However, this means both the parent and the child must close the pipe FDs

when they are done with them.
• Not closing them can cause functionality issues; for instance, if the child reads from the

pipe until there is nothing left, but the write end of the pipe is not closed everywhere
when we’re done with it, the child will stall forever thinking more input could be
coming.

• If someone tries calling read from a pipe and no data has been written, it will
block until some data is available (or the pipe write end is closed).

9

pipe()
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {

int fds[2];
pipe(fds);
size_t bytesSent = strlen(kPipeMessage) + 1;
pid_t pidOrZero = fork();
if (pidOrZero == 0) { // In the child, we only read from the pipe

close(fds[1]);
char buffer[bytesSent];
read(fds[0], buffer, sizeof(buffer));
close(fds[0]);
printf("Message from parent: %s\n", buffer);
return 0;

}
// In the parent, we only write to the pipe (assume everything is written)
close(fds[0]);
write(fds[1], kPipeMessage, bytesSent);
close(fds[1]);
waitpid(pidOrZero, NULL, 0);
return 0;

}

10

Plan For Today
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

11

Redirecting Process I/O
Each process has the special file descriptors STDIN (0), STDOUT (1) and STDERR
(2)
• Processes assume these indexes are for these methods of

communication (e.g. printf always outputs to file descriptor 1, STDOUT).

Idea: what happens if we change FD 1 to point somewhere else?

12

Redirecting Process I/O
Idea: what happens if we change FD 1 to point somewhere else?

int main() {
printf("This will print to the terminal\n");
close(STDOUT_FILENO);

// fd will always be 1
int fd = open("myfile.txt", O_WRONLY | O_CREAT

| O_TRUNC, 0644);

printf("This will print to myfile.txt!\n");
close(fd);
return 0;

}

13

Redirecting Process I/O
Idea: what happens if we change a special FD to point somewhere else?
Could we do this with a pipe?

This is how piping works in the terminal! And the executables don’t know
they are using a pipe.

14

Redirecting Process I/O
Stepping stone: our first goal is to write a program that spawns another
program and sends data to its STDIN.

The sort executable has no idea its input is not coming from terminal entry!

15

Redirecting Process I/O
Stepping stone: our first goal is to write a program that spawns another
program and sends data to its STDIN.
1. Our program creates a pipe
2. Our program spawns a child process
3. That child process changes its STDIN to be the pipe read end (how?)
4. That child process calls execvp to run the specified command
5. The parent writes to the write end of the pipe, which appears to the child as

its STDIN

"Wait a minute...I thought execvp consumed the process? How do the file
descriptors stick around?” New insight: execvp consumes the process,
but leaves the file descriptor table in tact!

16

Redirecting Process I/O
One issue; how do we "connect" our pipe FDs to STDIN/STDOUT?

dup2 makes a copy of a file descriptor entry and puts it in another file descriptor
index. If the second parameter is an already-open file descriptor, it is closed
before being used.

int dup2(int oldfd, int newfd);

Example: we can use dup2 to copy the pipe read file descriptor into standard
input! Then we can close the original pipe read file descriptor.
dup2(fds[0], STDIN_FILENO);
close(fds[0]);

17

Redirecting Process I/O

Illustrations courtesy of Roz Cyrus.

18

Plan For Today
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

19

subprocess
To practice this piping technique, let's implement a custom function
called subprocess.

subprocess_t subprocess(char *command);

subprocess is similar to our first shell example, except it also sets up a pipe we
can use to write to the child process's STDIN.

It returns a struct containing:
• the PID of the child process
• a file descriptor we can use to write to the child's STDIN

subprocess-soln.cc

20

21

22

23

Plan For Today
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

24

Pipeline
I/O redirection + pipes allow us to have piping in our shell: e.g. cat file.txt | sort

Final task: write a program that spawns two child processes and connects the
first child's STDOUT to the second child's STDIN.

25

Pipeline
Our final goal is to write a program that spawns two other processes where
one's output is the other's input. Both processes should run in parallel.
1. Our program creates a pipe
2. Our program spawns a child process
3. That child process changes its STDIN to be the pipe read end
4. That child process calls execvp to run the first specified command
5. Our program spawns another child process
6. That child process changes its STDOUT to be the pipe write end

26

Pipeline
Let's implement a custom function called runTwoProcessPipeline.

void runTwoProcessPipeline(const command& cmd1, const
command& cmd2, pid_t pids[]);

• runTwoProcessPipeline is similar to subprocess, except it also spawns a
second child and directs its STDOUT to write to the pipe. Both children should
run in parallel.
• It doesn't return anything, but it writes the two children PIDs to the

specified pids array

pipeline-soln.cc

27

Plan For Today
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

28

pipe2
There were a lot of close() calls! Is there a way for any of them to be done
automatically?

int pipe2(int fds[], int flags);

pipe2 is the same as pipe except it lets you customize the pipe with some
optional flags.
• if flags is 0, it's the same as pipe
• if flags is O_CLOEXEC, the pipe FDs will be automatically closed when the

surrounding process calls execvp.

29

pipe2
void runTwoProcessPipeline(const command& cmd1, const command& cmd2, pid_t
pids[]) {

int fds[2];
pipe(fds);

// Spawn the first child
pids[0] = fork();
if (pids[0] == 0) {

// The first child's STDOUT should be the write end of the pipe
close(fds[0]);
dup2(fds[1], STDOUT_FILENO);
close(fds[1]);
execvp(cmd1.argv[0], cmd1.argv);

}

// We no longer need the write end of the pipe
close(fds[1]);
...

The highlighted lines are
not necessary if we
use pipe2 with O_CLOEXEC
because the surrounding
process calls execvp.

30

pipe2
...
// Spawn the second child
pids[1] = fork();
if (pids[1] == 0) {

// The second child's STDIN should be the read end of the pipe
dup2(fds[0], STDIN_FILENO);
close(fds[0]);
execvp(cmd2.argv[0], cmd2.argv);

}

// We no longer need the read end of the pipe
close(fds[0]);

}
The highlighted line is not necessary if
we use pipe2 with O_CLOEXEC because
the surrounding process calls execvp.

31

Pipes and I/O Redirection
Pipes are sets of file descriptors that allow us to communicate across processes.
• Processes can share these file descriptors because they are copied on fork()
• File descriptors 0,1 and 2 are special and assumed to represent STDIN, STDOUT

and STDERR
• If we change those file descriptors to point to other resources, we can redirect

STDIN/STDOUT/STDERR to be something else without the program knowing!
• Pipes are how terminal support for piping and redirection (command1 |

command2 and command1 > file.txt) are implemented!

32

assign3
Implement your own shell! (“stsh” – Stanford Shell)

4 key features:
• Run a single command and wait for it to finish
• Run 2 commands connected via a pipe
• Run an arbitrary number of commands connected via pipes
• Have command input come from a file, or save command output to a file

33

Recap
• Recap: Pipes so far
• Redirecting Process I/O
• Practice: implementing subprocess
• Practice: implementing pipeline
• pipe2

Next time: introduction to multithreading

cp -r /afs/ir/class/cs111/lecture-code/lect11 .

Lecture 11 takeaway: We can
share pipes with child processes
and change FDs 0-2 to connect
processes and redirect their I/O.

