
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 12
Multithreading Introduction

😷 masks required

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 4 and 

Chapter 5 up through Section 5.1



2

Topic 3: Multithreading - How 
can we have concurrency within a 
single process? How does the 
operating system support this?



3

Multithreading - How can we have concurrency within a single process? How 
does the operating system support this?

Why is answering this question important?
• Helps us understand how a single process can do multiple things at the same 

time, a technique used in various software (today)
• Provides insight into race conditions, unpredictable orderings that can cause 

undesirable behavior, and how to fix them (next few lectures)
• Allows us to see how the OS schedules and switches between tasks (after 

midterm)

CS111 Topic 3: Multithreading

assign4: implement several multithreaded programs while eliminating race conditions



4

CS111 Topic 3: Multithreading, Part 1

Multithreading 
Introduction

Race 
conditions and 

locks

Locks and 
Condition 
Variables

Multithreading 
Patterns

This Lecture Next Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!



5

Learning Goals
• Learn about how threads allow for concurrency within a single process
• Understand the differences between threads and processes
• Discover some of the pitfalls of threads sharing the same virtual address space



6

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .



7

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .



8

From Processes to Threads
Multiprocessing has allowed us to spawn other processes to do tasks or run 
programs
• Powerful; can execute/wait on other programs, secure (separate memory 

space), communicate with pipes and signals
• But limited; interprocess communication is cumbersome, hard to share 

data/coordinate
• Is there another way we can have concurrency beyond multiprocessing that 

handles these tradeoffs differently?



9

From Processes to Threads
We can have concurrency within a single process using threads: independent 
execution sequences within a single process.
• Threads let us run multiple functions in our program concurrently
• Multithreading is common to parallelize tasks, especially on multiple cores
• In C++: spawn a thread using thread() and the thread variable type and specify 

what function you want the thread to execute (optionally passing parameters!)
• Each thread operates within the same process, so they share a virtual address 

space (!) (globals, heap, pass by reference, etc.)
• The processes's stack segment is divided into a "ministack" for each thread.
• In the OS, threads are actually the unit of concurrency, not processes (more on 

this later)
• Many similarities between threads and processes, but some key differences



10

Threads vs. Processes
Processes:
• isolate virtual address spaces (good: security and stability, bad: harder to share 

info)
• can run external programs easily (fork-exec) (good)
• harder to coordinate multiple tasks within the same program (bad)
Threads:
• share virtual address space (bad: security and stability, good: easier to share 

info)
• can't run external programs easily (bad)
• easier to coordinate multiple tasks within the same program (good)



11

C++ Thread
A thread object can be spawned to run the specified function with the given 
arguments.

thread myThread(myFunc, arg1, arg2, ...);

• myFunc: the function the thread should execute asynchronously
• args: a list of arguments (any length, or none) to pass to the function upon 

execution
• myFunc’s function's return value is ignored (use pass by reference instead)
• Once initialized with this constructor, the thread may execute at any time!



12

C++ Thread
To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);
...
// Wait for thread to finish (blocks) 
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];
...
for (int i = 0; i < 5; i++) {

friends[i].join();
}



13

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .



14

Our First Threads Program
static void greeting(size_t i) { 

cout << "Hello, world! I am thread " << i << endl; 
}

...

friends.cc



15

Our First Threads Program
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {  
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends]; 
for (size_t i = 0; i < kNumFriends; i++) { 

friends[i] = thread(greeting, i); 
} 

// Wait for threads
for (size_t i = 0; i < kNumFriends; i++) { 

friends[i].join(); 
} 

cout << "Everyone's said hello!" << endl; 
return 0; 

}



16

C++ Thread
We can make an array of threads as follows:

// declare array of empty thread handles 
thread friends[5]; 

// Spawn threads 
for (size_t i = 0; i < 5; i++) { 

friends[i] = thread(myFunc, arg1, arg2); 
}

We can also initialize an array of threads as follows (note the loop by reference):

thread friends[5]; 
for (thread& currFriend : friends) { 

currFriend = thread(myFunc, arg1, arg2); 
}



17

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .



18

Race Conditions
• Like with processes, threads can execute in unpredictable orderings.
• A race condition is an unpredictable ordering of events where some orderings 

may cause undesired behavior.
• A thread-safe function is one that will always execute correctly, even when 

called concurrently from multiple threads.
• printf is thread-safe, but operator<< is not. This means e.g. cout statements 

could get interleaved!
• To avoid this, use oslock and osunlock (custom CS111 functions - #include 

"ostreamlock.h") around streams. They ensure at most one thread has 
permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;



19

Our First Threads Program
static void greeting(size_t i) { 

cout << oslock << "Hello, world! I am thread " << i << endl << 
osunlock; 
}

...

friends.cc



20

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .



21

Threads Share Memory
Unlike parent/child processes, threads execute in the same virtual address space
• This means we can e.g. pass parameters by reference and have all threads 

access/modify them!
• To pass by reference with thread(), we must use the special ref() function 

around any reference parameters:

static void greeting(size_t& i) {
...

}

for (size_t i = 0; i < kNumFriends; i++) {
friends[i] = thread(greeting, ref(i)); 

} 
friends.cc



22

Threads Share Memory
• Here, all threads are referencing the same copy of i, which is updated in the for

loop.  It could be that by the time the threads access it, it’s already been 
incremented all the way to 6!
• While in this example we can just pass by copy, we must keep an eye out for 

the consequences of shared memory.



23

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .



24

Parallelizing Tasks
Threads allow a process to parallelize a program across multiple cores.
• Consider a scenario where we want to sell 250 tickets and have 10 cores
• Simulation: let each thread help sell tickets until none are left



25

Parallelizing Tasks
Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10; 
int main(int argc, const char *argv[]) { 

thread ticketAgents[kNumTicketAgents]; 
size_t remainingTickets = 250; 

for (size_t i = 0; i < kNumTicketAgents; i++) { 
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets)); 

} 

for (size_t i = 0; i < kNumTicketAgents; i++) { 
ticketAgents[i].join(); 

} 
cout << "Ticket selling done!" << endl; 
return 0;

}



26

Demo: confused-ticket-
agents.cc



27

Overselling Tickets

What might have caused us to oversell tickets?

static void sellTickets(size_t id, size_t& remainingTickets) { 
while (remainingTickets > 0) { 

sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Respond with your thoughts on PollEv: 
pollev.com/cs111 or text CS111 to 22333 once to join.



28



29

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1



30

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets 
to sell? Yep!



31

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets 
to sell? Yep!



32

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets 
to sell? Yep!z

z
z



33

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets 
to sell? Yep!z

z
z



34

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
z
z
z Are there tickets 

to sell? Yep!



35

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
z
z
z Are there tickets 

to sell? Yep!



36

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 0
Let’s sell a ticket!

z
z
z

z
z
z



37

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = 0
Let’s sell a ticket!

z
z
z

z
z
z



38

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number>

Let’s sell a ticket!z
z
z

z
z
z



39

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number>

Let’s sell a ticket!z
z
z

z
z
z



40

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number - 1>
z
z
z

Let’s sell a ticket!



41

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) { 

while (remainingTickets > 0) { 
sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock; 
} 
cout << oslock << "Thread #" << id 
<< " sees no remaining tickets to sell and exits." << endl << osunlock; 

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number - 1>
z
z
z

Let’s sell a ticket!



42

Race Condition: Overselling Tickets
There is a race condition here!  Threads could interrupt each other in between 
checking for remaining tickets and selling them.

• If thread A sees tickets remaining and commits to selling a ticket, another
thread B could come in and sell that same ticket before thread A does.
• This can happen because this portion of code isn’t atomic.

static void sellTickets(size_t id, size_t& remainingTickets) { 
while (remainingTickets > 0) { 

sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
...

} 
...

}



43

Race Condition: Overselling Tickets
If thread A sees tickets remaining and commits to selling a ticket, another thread 
B could come in and sell that same ticket before thread A does.

• Atomicity: externally, the code has either executed or not; external observers 
do not see any intermediate states mid-execution.
• We want a thread to do the entire check-and-sell operation uninterrupted by 

other threads.

static void sellTickets(size_t id, size_t& remainingTickets) { 
while (remainingTickets > 0) { 

sleep_for(500); // simulate "selling a ticket"
remainingTickets--; 
...

} 
...

}



44

Atomicity
• C++ statements aren’t inherently atomic.
• Even single C++ statements like remainingTickets-- take multiple operations

and could be interrupted in the middle. (multiple assembly instructions to get 
value, decrement value, and save updated value).

• Even if we altered the code as below, it still wouldn’t fix the problem:

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets-- > 0) {

sleep_for(500);  // simulate "selling a ticket"
...

}



45

It would be nice if we could 
allow only one thread at a 
time to execute a region of 

code.



46

Recap
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

Next time: introducing mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect12 .

Lecture 12 takeaway: A 
process can have multiple 
threads executing tasks 
simultaneously.  Threads share 
the same virtual address space, 
and race conditions can cause 
unintended problems!


