CS111, Lecture 12

Multithreading Introduction

Optional reading:

Operating Systems: Principles and Practice (2" Edition): Chapter 4 and
Chapter 5 up through Section 5.1

é: :% m aS kS re u i red This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
h Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?

* Helps us understand how a single process can do multiple things at the same
time, a technique used in various software (today)

* Provides insight into race conditions, unpredictable orderings that can cause
undesirable behavior, and how to fix them (next few lectures)

* Allows us to see how the OS schedules and switches between tasks (after
midterm)

assign4: implement several multithreaded programs while eliminating race conditions
3

CS111 Topic 3: Multithreading, Part 1

Multithreading Race Locks and

Introduction

Multithreading
Patterns

conditions and Condition
locks Variables

This Lecture Next Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

Learning Goals

* Learn about how threads allow for concurrency within a single process
e Understand the differences between threads and processes
* Discover some of the pitfalls of threads sharing the same virtual address space

Plan For Today

* Introducing multithreading
 Example: greeting friends
* Race conditions

* Threads share memory
 Example: selling tickets

cp -r /afs/ir/class/cslll/lecture-code/lectl2 . 6

Plan For Today

* Introducing multithreading

cp -r /afs/ir/class/cslll/lecture-code/lectl2 . 7

From Processes to Threads

Multiprocessing has allowed us to spawn other processes to do tasks or run
programs

* Powerful; can execute/wait on other programs, secure (separate memory
space), communicate with pipes and signals

* But limited; interprocess communication is cumbersome, hard to share
data/coordinate

* |s there another way we can have concurrency beyond multiprocessing that
handles these tradeoffs differently?

From Processes to Threads

We can have concurrency within a single process using threads: independent
execution sequences within a single process.

* Threads let us run multiple functions in our program concurrently
* Multithreading is common to parallelize tasks, especially on multiple cores

* In C++: spawn a thread using thread() and the thread variable type and specify
what function you want the thread to execute (optionally passing parameters!)

* Each thread operates within the same process, so they share a virtual address
space (!) (globals, heap, pass by reference, etc.)

* The processes's stack segment is divided into a "ministack” for each thread.

* In the OS, threads are actually the unit of concurrency, not processes (more on
this later)

* Many similarities between threads and processes, but some key differences

9

Threads vs. Processes

Processes:

* isolate virtual address spaces (good: security and stability, bad: harder to share
info)

e can run external programs easily (fork-exec) (good)
e harder to coordinate multiple tasks within the same program (bad)
Threads:

 share virtual address space (bad: security and stability, good: easier to share
info)

* can't run external programs easily (bad)
e easier to coordinate multiple tasks within the same program (good)

10

C++ Thread

A thread object can be spawned to run the specified function with the given
arguments.

thread myThread(myFunc, argl, arg2, ...);

* myFunc: the function the thread should execute asynchronously

e args: a list of arguments (any length, or none) to pass to the function upon
execution

 myFunc’s function's return value is ignored (use pass by reference instead)
* Once initialized with this constructor, the thread may execute at any time!

11

C++ Thread

To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, argl, arg2);
// Wait for thread to finish (blocks)
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];

for (int i = @; i < 5; i++) {
friends[i].join();

} 12

Plan For Today

 Example: greeting friends

cp -r /afs/ir/class/cslll/lecture-code/lectl2 . 13

Our First Threads Program

static void greeting(size t i) {

¥

cout << "Hello, world! I am thread " << 1 << endl;

14

Our First Threads Program

static const size t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];

for (size_t i = 0; i < kNumFriends; i++) {
friends[i] = thread(greeting, i);

}

// Wait for threads

for (size_t i = 9; i < kNumFriends; i++) {
friends[i].join();

}

cout << "Everyone's said hello!" << endl;
return 0;

C++ Thread

We can make an array of threads as follows:

thread friends[5];

for (size_t i = 0; i < 5; i++) {
friends[i] = thread(myFunc, argl, arg2);
}

We can also initialize an array of threads as follows (note the loop by reference):

thread friends[5];
for (thread& currFriend : friends) {
currFriend = thread(myFunc, argl, arg2);

} 16

 Race conditions

Plan For Today

cp -r /afs/ir/class/cslll/lecture-code/lectl2 .

17

Race Conditions

* Like with processes, threads can execute in unpredictable orderings.

* A race condition is an unpredictable ordering of events where some orderings
may cause undesired behavior.

* A thread-safe function is one that will always execute correctly, even when
called concurrently from multiple threads.

 printf is thread-safe, but operator<< is not. This means e.g. cout statements
could get interleaved!

* To avoid this, use oslock and osunlock (custom CS111 functions - #include
"ostreamlock.h") around streams. They ensure at most one thread has
permission to write into a stream at any one time.

cout << oslock << "Hello, world!"™ << endl << osunlock;

Our First Threads Program

static void greeting(size t i) {
cout << oslock << "Hello, world! I am thread " << 1 << endl <<
osunlock;

¥

. friends.cc ,

Plan For Today

* Threads share memory

cp -r /afs/ir/class/cslll/lecture-code/lectl2 . 20

Threads Share Memory

Unlike parent/child processes, threads execute in the same virtual address space

* This means we can e.g. pass parameters by reference and have all threads
access/modify them!

* To pass by reference with thread(), we must use the special ref() function
around any reference parameters:

static void greeting(size t& i) {

¥

for (size_t i = 0; i < kNumFriends; i++) f{
friends[i] = thread(greeting, ref(i));

} > .
B friends.cc

Threads Share Memory

* Here, all threads are referencing the same copy of i, which is updated in the for
loop. It could be that by the time the threads access it, it’s already been
incremented all the way to 6!

* While in this example we can just pass by copy, we must keep an eye out for
the consequences of shared memory.

22

Plan For Today

 Example: selling tickets

cp -r /afs/ir/class/cslll/lecture-code/lectl2 . 23

Parallelizing Tasks

Threads allow a process to parallelize a program across multiple cores.
* Consider a scenario where we want to sell 250 tickets and have 10 cores
* Simulation: let each thread help sell tickets until none are left

24

Parallelizing Tasks

Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10;

int main(int argc, const char *argv[]) {
thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;

for (size_t i = @; i < kNumTicketAgents; i++) {

ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));
¥
for (size_t i = @; i < kNumTicketAgents; i++) {

ticketAgents[i].join();
}

cout << "Ticket selling done!" << endl;
return 0;

Demo: confused-ticket-
agents.cc

Overselling Tickets

static void sellTickets(size t id, size t& remainingTickets) {
while (remainingTickets > 9) {
sleep for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << 1id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << 1id
<< " sees no remaining tickets to sell and exits."” << endl << osunlock;

What might have caused us to oversell tickets?

Respond with your thoughts on PollEv:
pollev.com/cs111 or text CS111 to 22333 once to join.

27

What might have caused us to oversell tickets?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Race Condition: Overselling Tickets

static void sellTickets(size t id, size t& remainingTickets) {
while (remainingTickets > 0) {
sleep for(500); // simulate "selling a ticket”
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << 1id
<< " sees no remaining tickets to sell and exits.

<< endl << osunlock;

| remainingTickets = 11

Thread #1 Thread #2 Thread #3

29

Race Condition: Overselling Tickets

while (remainingTickets > 0) {

Irem iningTickets = 11
Are there tickets — a_ INgTICKELS = 2

to sell? Yep!

.

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

sleep for(500); // simulate "selling a ticket"

Irem iningTickets = 11
Are there tickets — a_ INgTICKELS = 2

to sell? Yep!

.

Thread #1 Thread #2 Thread #3 °*

Race Condition: Overselling Tickets

while (remainingTickets > 0) {

I remainingTickets = 1|

Are there tickets
to sell? Yep!

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

sleep for(500); // simulate "selling a ticket"

I remainingTickets = 1|

Are there tickets
to sell? Yep!

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

while (remainingTickets > 0) {

| remalnlnngckets =11 Are there tickets

to sell? Yep!

v
&

Thread #1 Thread #2 Thread #3 ¢

Race Condition: Overselling Tickets

sleep for(500); // simulate "selling a ticket"

| remalnlnngckets =11 Are there tickets

to sell? Yep!

v
&

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

remainingTickets--;

Let's sell a ticket! | _fem Einmg'_l'lcﬁet_q - O_I

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;

Let's sell a ticket! | _fem Einmg'_l'lcﬁet_q - O_I

Thread #1 Thread #2 Thread #3 °/

Race Condition: Overselling Tickets

remainingTickets--;

| remainingTickets = <really large number> |

Let's sell a ticket!

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;

| remainingTickets = <really large number> |

Let's sell a ticket!

Thread #1 Thread #2 Thread #3 °°

Race Condition: Overselling Tickets

remainingTickets--;

_———— e ——,
I remainingTickets = <really large number - 1>

Let's sell a ticket!

Thread #1 Thread #2 Thread #3

Race Condition: Overselling Tickets

cout << oslock << "Thread #" << id << " sold a ticket ("
<< remainingTickets << " remain)." << endl << osunlock;

———— e ——,
I remainingTickets = <really large number - 1>

Let's sell a ticket!

Thread #1 Thread #2 Thread #3

Race Condition: Overselling Tickets

There is a race condition here! Threads could interrupt each other in between
checking for remaining tickets and selling them.

static void sellTickets(size t id, size t& remainingTickets) {
while (remainingTickets > 9) {
sleep for(500); // simulate "selling a ticket"
remainingTickets--;

* If thread A sees tickets remaining and commits to selling a ticket, another
thread B could come in and sell that same ticket before thread A does.

* This can happen because this portion of code isn’t atomic.

42

Race Condition: Overselling Tickets

If thread A sees tickets remaining and commits to selling a ticket, another thread
B could come in and sell that same ticket before thread A does.

static void sellTickets(size t id, size t& remainingTickets) {
while (remainingTickets > 9) {
sleep for(500); // simulate "selling a ticket"
remainingTickets--;

¥

e Atomicity: externally, the code has either executed or not; external observers
do not see any intermediate states mid-execution.

* We want a thread to do the entire check-and-sell operation uninterrupted by
other threads. 43

Atomicity

e C++ statements aren’t inherently atomic.

* Even single C++ statements like remainingTickets-- take multiple operations
and could be interrupted in the middle. (multiple assembly instructions to get
value, decrement value, and save updated value).

* Even if we altered the code as below, it still wouldn’t fix the problem:

static void sellTickets(size t id, size t& remainingTickets) {
while (remainingTickets-- > 0) {
sleep for(500); // simulate "selling a ticket"

It would be nice if we could

allow only one thread at a

time to execute a region of
code.

Recap

* Introducing multithreading Lecture 12 takeaway: A

* Example: greeting friends process can have multiple

* Race conditions threads executing tasks

* Threads share memory simultaneously. Threads share

 Example: selling tickets the same virtual address space,
and race conditions can cause
unintended problems!

Next time: introducing mutexes

cp -r /afs/ir/class/cslll/lecture-code/lectl2 . 46

