
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 13
Race Conditions and Locks

😷 masks recommended

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 5.2-5.4

and Section 6.5

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?
• Helps us understand how a single process can do multiple things at the same

time, a technique used in various software (today)
• Provides insight into race conditions, unpredictable orderings that can cause

undesirable behavior, and how to fix them (today)
• Allows us to see how the OS schedules and switches between tasks (after

midterm)

CS111 Topic 3: Multithreading

assign4: implement several multithreaded programs while eliminating race conditions

4

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

Last lecture This Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

5

Learning Goals
• Discover some of the pitfalls of threads sharing the same virtual address space
• Understand how to identify critical sections and fix race conditions/deadlock
• Learn how locks can help us limit access to shared resources

6

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

7

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

8

From Processes to Threads
We can have concurrency within a single process using threads: independent
execution sequences within a single process.
• Threads let us run multiple functions in our program concurrently (e.g.

parallelize computation)
• Each thread operates within the same process, so they share a virtual address

space (!) (globals, heap, pass by reference, etc.)

9

C++ Thread
A thread object can be spawned to run the specified function with the given
arguments.

thread myThread(myFunc, arg1, arg2, ...);

• myFunc: the function the thread should execute asynchronously
• args: a list of arguments (any length, or none) to pass to the function
• myFunc’s function's return value is ignored (use pass by reference instead)
• Once initialized with this constructor, the thread may execute at any time!

To pass objects by reference to a thread, use the ref() function:

void myFunc(int& x, int& y) {...}

thread myThread(myFunc, ref(arg1), ref(arg2));

10

C++ Thread
To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);
...
// Wait for thread to finish (blocks)
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];
...
for (int i = 0; i < 5; i++) {

friends[i].join();
}

11

Race Conditions
Like with processes, threads can execute in unpredictable orderings. A race
condition is an unpredictable ordering of events where some orderings may
cause undesired behavior.

12

Race Condition: Overselling Tickets
Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10;
int main(int argc, const char *argv[]) {

thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));

}

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i].join();

}
cout << "Ticket selling done!" << endl;
return 0;

}

13

Race Condition: Overselling Tickets
There is a race condition here! Threads could interrupt each other in between
checking for remaining tickets and selling them.

• If thread A sees tickets remaining and commits to selling a ticket, another
thread B could come in and sell that same ticket before thread A does.
• We want a thread to do the entire check-and-sell operation uninterrupted by

other threads. We want this portion of code to be atomic.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
...

}
...

}

14

It would be nice if we could
allow only one thread at a
time to execute a region of

code.

15

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

16

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

17

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

18

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (true) {

if (remainingTickets == 0) break;
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

19

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (true) {

if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

20

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (true) {

🚦🚦🚦 // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

21

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

22

Mutexes
A mutex (”mutual exclusion”) is a variable type that lets us enforce this pattern
of only 1 thread having access to something.
• Also known as a lock (there are other types of locks as well)
• A way to add a constraint to your program: “only one thread may access or

execute this at a time”.
• Initially unlocked
• You make a mutex for each distinct thing you need to limit access to.
• Owned by one thread at a time
• You call lock() on the mutex to attempt to take the lock
• You call unlock() on the mutex when you are done to give the lock back

23

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

24

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

25

Mutexes
int main(int argc, const char *argv[]) {

thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;
mutex counterLock;

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets),

ref(counterLock));
}
...

}

26

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

27

Mutexes

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket << " remain)." << endl << osunlock;
}
...

Step 3: Lock the mutex at the start of the critical section

28

Mutexes

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket << " remain)." << endl << osunlock;
}
...

When a thread calls lock():
• If the lock is unlocked: the thread now owns the lock and continues execution
• If the lock is locked: the thread blocks and waits until the lock is unlocked
• If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives lock

(not necessarily one waiting longest)

29

Mutexes
Step 4: Unlock the mutex at the end of the critical section
Calling unlock lets another waiting thread (if any) take ownership of the lock

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket << " remain)." << endl << osunlock;
}
...

30

Demo: stalled-ticket-
agents.cc

31

Stalled Ticket Agents

What might have caused some ticket agents to stall?

Respond with your thoughts on PollEv:
pollev.com/cs111 or text CS111 to 22333 once to join.

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket << " remain)." << endl << osunlock;
}
...

32

33

Stalled Ticket Agents

Make sure to trace each thread's possible paths of execution to ensure they
always give back shared resources like locks.

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) {

counterLock.unlock(); // must give up lock before exiting
break;

}
size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
...

34

Mutex Uses
Other times you need a mutex:
• When there are multiple threads writing to a variable
• When there is a thread writing and one or more threads reading

Why do you not need a mutex when there are no writers (only readers)?

35

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

36

Deadlock
Deadlock occurs when multiple threads are all blocked, waiting on a resource
owned by one of the other threads. None can make progress! Example:

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!
One prevention technique - prevent circularities: all threads request resources in
the same order (e.g., always lock l1 before l2.)
Another – limit number of threads competing for a shared resource

Thread A Thread B
mutex1.lock();
mutex2.lock();
...

mutex2.lock();
mutex1.lock();
...

37

Plan For Today
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

38

Deadlock Example: Dining
Philosophers Simulation

• Five philosophers sit around a circular table, eating spaghetti
• There is one fork for each of them
• Each philosopher thinks, then eats, and repeats this three times for their

three daily meals.
• To eat, a philosopher must grab the fork on their left and the fork on their

right. Then they chow on spaghetti to nourish their big, philosophizing brain.
• When they're full, they put down the forks in the same order they picked them

up and return to thinking for a while.
• To think, a philosopher keeps to themselves for some amount of

time. Sometimes they think for a long time, and sometimes they barely think
at all.

39

Dining Philosophers

https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

40

Dining Philosophers
Goal: we must encode resource constraints into our program.
Example: for a given fork, how many philosophers can use it at a time? One.
How can we encode this into our program? Make a mutex for each fork.

41

Dining Philosophers
static void philosopher(size_t id, mutex& left, mutex&
right) { ... }

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];
thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i,
ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]));

}
for (thread& p: philosophers) p.join();
return 0;

}

42

Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex&
right) {

for (size_t i = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right);

}
}

A philosopher thinks and eats, and repeats this 3 times.

43

Dining Philosophers

static void think(size_t id) {
cout << oslock << id << " starts thinking."

<< endl << osunlock;
sleep_for(getThinkTime());
cout << oslock << id << " all done thinking. "

<< endl << osunlock;
}

think is modeled as sleeping the thread for some amount of time.

44

Dining Philosophers

static void eat(size_t id, mutex& left, mutex& right) {
left.lock();
right.lock();
cout << oslock << id << " starts eating om nom nom

nom." << endl << osunlock;
sleep_for(getEatTime());
cout << oslock << id << " all done eating." << endl

<< osunlock;
left.unlock();
right.unlock();

}

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

Spoiler: there is a race condition here
that leads to deadlock. What is it?

45

Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock! All philosophers will wait on their right fork, which will never

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and

have no concurrency issues. Let’s try it!

dining-philosophers-with-deadlock.cc

46

Food For Thought
We are (incorrectly) assuming that at least one philosopher is always able to pick
up both of their forks.
We can prevent deadlock here by limiting the number of threads competing for
a shared resource.

Idea: have a counter of “permits”. Initially 4. A philosopher must have a permit
to eat. Once done eating, a philosopher returns its permit. (More next time…)

47

Recap
• Recap: threads and overselling tickets
• Critical Sections
• Mutexes
• Deadlock
• Dining Philosophers

Next time: condition variables

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

Lecture 13 takeaway: A mutex
(“lock”) can help us limit critical
sections to 1 thread at a time. A
thread can lock a mutex to take
ownership of it, and unlock it to
give it back. Locking a locked
mutex will block the thread until
the mutex is available. We must
watch out for race conditions
and deadlock!

