CS111, Lecture 14

Locks and Condition Variables

Optional reading:

Operating Systems: Principles and Practice (2" Edition): Sections 5.2-5.4
and Section 6.5

[; «} This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
N m C mm i ibuti i i
NG a S kS re O e n d ed Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1




Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?



CS111 Topic 3: Multithreading, Part 1

Race Locks and
conditions and Condition
locks Variables

Multithreading
Introduction

Multithreading

Patterns

Lecture 12 Last Lecture This Lecture Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!



Learning Goals

* Get more practice using mutexes to prevent race conditions
* Learn about ways to add constraints to our programs to prevent deadlock

* Learn how condition variables can let threads signal to each other and wait for
conditions to become true



Plan For Today

* Recap: mutexes and dining philosophers
* Encoding resource constraints
* Condition Variables

cp -r /afs/ir/class/cslll/lecture-code/lectlsd . 5




Plan For Today

* Recap: mutexes and dining philosophers

cp -r /afs/ir/class/cslll/lecture-code/lectlsd . 6




A mutex ("mutual exclusion”) is a variable type that lets us enforce the pattern
of only 1 thread having access to something at a time.

* You make a mutex for each distinct thing you need to limit access to.
* You call lock() on the mutex to attempt to take the lock

* You call unlock() on the mutex when you are done to give the lock back



B W

ldentify a critical section; section that only 1 thread should execute at a time.

Create a mutex and share it among all threads executing that critical section
Lock the mutex at the start of the critical section

Unlock the mutex at the end of the critical section



Ticket Agents

static void sellTickets(size_t id, size t& remainingTickets, mutex&

counterLock) {
while (true) {

counterLock.lock(); // only 1 thread can proceed at a time

if (remainingTickets == 0) {
counterLock.unlock(); // must give up lock before exiting
break;

}

size t myTicket = remainingTickets;

remainingTickets--;

counterLock.unlock(); // once thread passes here, another can go

sleep for(500); // simulate "selling a ticket”




Five philosophers sit around a circular table,
eating spaghetti

There is one fork for each of them

Each philosopher thinks, then eats, and
repeats this three times

To eat, a philosopher must grab the fork on
their left and the fork on their right. Then
they chow down.

When they're full, they put down the forks
in the same order they picked them up and
return to thinking for a while.

To think, a philosopher keeps to themselves
for some amount of time.

https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining philosophers_problem.png

Deadlock Example: Dining
Philosophers Simulation

10



Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex&
right) { ... }

int main(int argc, const char *argv[]) {

mutex forks[kNumForks];

thread philosophers[kNumPhilosophers];

for (size t i = 9; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i,

ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]));

}

for (thread& p: philosophers) p.join();

return 0;



Dining Philosophers

A philosopher thinks and eats, and repeats this 3 times.

static void philosopher(size_t id, mutex& left, mutex&
right) {
for (size t 1 = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right);

12



Dining Philosophers

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

static void eat(size t id, mutex& left, mutex& right) {
left.lock();
right.lock();
cout << oslock << id <«

nom." << endl << osunlock;
sleep for(getEatTime());
cout << oslock << id <«

<< osunlock;

left.unlock();

right.unlock();

starts eating om nom nom

all done eating." << endl



Dining Philosophers

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

static void eat(size t id, mutex& left, mutex& right) {
left.lock();
right.lock();
cout << oslock << id <«

nom." << endl << osunlock;

sleep for(get -7 " —
coutp2< OSOC There is a race condition here that leads to

<< osunl deadlock — deadlock occurs when multiple

left. unlock() threads are all blocked, waiting on a resource
right.unlock( owned by one of the other blocked threads.

starts eating om nom nom




Food For Thought

We get deadlock if all philosophers grab their left fork and then go off the CPU.
All philosophers will wait on their right fork, which will never become available.

 Testing our hypothesis: insert a sleep_for call in between grabbing the two
forks

* We should be able to insert a sleep_for call anywhere in a thread routine and
have no concurrency issues.

We (incorrectly) assumed that at least one philosopher is always able to pick up
both of their forks. How can we fix this?

dining-philosophers-with-deadlock.cc

15



Race Conditions and Deadlock

In multithreaded programs, we need to ensure that:

there are never race conditions

e we can generally solve race conditions with mutexes. Use them to mark the
boundaries of critical sections to limit them to 1 thread at a time.

there's zero chance of deadlock (otherwise some or all threads are starved)

e we can solve deadlock by requesting resources in the same order and by
limiting the number of threads competing for a shared resource.

16



Plan For Today

* Encoding resource constraints

cp -r /afs/ir/class/cslll/lecture-code/lectlsd . 17




Encoding Resource Constraints

Goal: we must encode resource constraints into our program.
Example: how many philosophers can try to eat at the same time? Four.
* Alternatively: how many philosophers can eat at the same time? Two.

 Why might the first one be better? Imposes less bottlenecking while still
solving the issue.

How can we encode this into our program?

Have a counter of “permits”. Initially 4. A philosopher must have a permit
(decrement counter or wait) to try to eat. Once done eating, a philosopher
returns its permit (increment counter).

18



Tickets, Please...

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];

size t permits = kNumForks - 1;
mutex permitsLock;

thread philosophers|[kNumPhilosophers];
for (size_ t i = 0; i < kNumPhilosophers; i++) {
philosophers[i] = thread(philosopher, i, ref(forks[i]),

ref(forks[ (i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsLock));

}

for (thread& p: philosophers) p.join();

return 0;



Tickets, Please...

A philosopher thinks and eats, and repeats this 3 times.

static void philosopher(size_t id, mutex& left, mutex&
right, size t& permits, mutex& permitsLock) {
for (size t 1 = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right, permits, permitsLock);

20



Tickets, Please...

static void eat(size_ t id, mutex& left, mutex& right,
size t& permits, mutex& permitsLock) {

waitForPermission(permits, permitsLock);
left.lock();
right.lock();

cout << oslock << id <«

nom." << endl << osunlock;
sleep for(getEatTime());
cout << oslock << id <«
<< osunlock;

grantPermission(permits, permitsLock);
left.unlock();

right.unlock();

starts eating om nom nom

all done eating." << endl



To put a permit back, increment the counter by 1 and continue.

static void grantPermission(size_t& permits, mutex&
permitsLock) {

nermitsLock.lock();
permits++;

permitsLock.unlock();

22



waltForPermission

* If there are permits, decrement the counter by 1 and continue
* If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {
while (true) {
permitsLock.lock();
if (permits > @) break;
permitsLock.unlock();
// wait a little while (how??)
}
permits--;
permitsLock.unlock();
-}_ 23



waltForPermission

* If there are permits, decrement the counter by 1 and continue

* If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {

while {Er‘lde)k{l " This is called busy
permitslLock. loc ; o
if (permits > @) break; waiting (ba_d)' We ar_e ,
permitsLock.unlock(); unnecessarily and arbitrarily
sleep for(10); // ?? using CPU time to check
L when a permit is available.
permits--;

permitsLock.unlock();
X 24



It would be nice iIf someone
could let us know when
they return their permit.

Then, we can sleep until

this happens.




Plan For Today

 Condition Variables

cp -r /afs/ir/class/cslll/lecture-code/lectlsd . 26




Condition Variables

A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.

* You make one for each distinct event you need to wait / notify for.

* We can call wait on the condition variable to sleep until another thread signals
this condition variable.

* You call notify_all on the condition variable to send a notification to all waiting
threads and wake them up.

27



Condition Variables

1. Identify a single kind of event that we need to wait / notify for
Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

4. l|dentify who will notify that this happens, and have them notify via the
condition variable

5. ldentify who will wait for this to happen, and have them wait via the
condition variable

28



Condition Variables

1. ldentify a single kind of event that we need to wait / notify for

The event here is “some permits are again available”.

29



Condition Variables

2. Ensure there is proper state to check if the event has happened

We can check whether there are permits now
available by checking the permits count.

30



Condition Variables

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

31



Condition Variables

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];
size t permits = kNumForks - 1;
mutex permitslLock;
condition_variable any permitsCV;

thread philosophers|[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {
philosophers[i] = thread(philosopher, i, ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsCV),

ref(permitsLock));
}
for (thread& p: philosophers) p.join();
return 0;



Condition Variables

4. l|dentify who will notify that this happens, and have them notify via the
condition variable

When someone returns a permit and there were
no permits available previously, notify all.

B3



We must notify all once permits have become available again to wake up waiting
threads.

static void grantPermission(size t& permits,

condition variable any& permitsCV, mutex& permitsLock) {
permitsLock.lock();
permits++;
if (permits == 1) permitsCV.notify all();
permitsLock.unlock();

34



Condition Variables

5. ldentify who will wait for this to happen, and have them wait via the
condition variable

If we need a permit but there are none available, wait.

35



waltForPermission

If no permits are available, we must wait until one becomes available.

Key Idea: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size t& permits,
condition variable any& permitsCV, mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();



Deadlock, Round 2

static void waitForPermission(size_t& permits, condition variable any&
permitsCV, mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();
}
Spoiler: there is a race condition that could lead to deadlock. What ordering of

events between threads could cause deadlock here? (Hint: CV notifications
aren’t queued up).

Respond with your thoughts on PollEv:
pollev.com/cs111 or text CS111 to 22333 once to join.

B/




What ordering of events between threads could lead to
deadlock here?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

' permits = 0 I

L____J

o Thread #1 Thread #2 39



Deadlock: waitForPermission

permitsLock.lock();

' permits = 0 '

L____J

[ PERMIT ] ‘
\;?" "*‘:%;,‘“fj ’ |

 Thread #1 Thread #2 40




Deadlock: waitForPermission

if (permits == 0) {

l 1 — I
l_pgrnllts_—_OJ | need to wait for
a permit in order

[PERMIT] ' (0 CEIE

- Thread #1 Thread #2 41




Deadlock: waitForPermission

permitsLock.unlock();

l 1 — I
l_pgrnllts_—_OJ | need to wait for
a permit in order

[PERMIT] ' to eat

o Thread #1 Thread #2 42




Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

}
e _ Al
All done eating! | pgrnllts_—_OJ
will return my permit.

AA

[PERMIT]

¢ .

Thread #1 Thread #2 43




Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

}
l 1 — I
All done eating! | permits = 1
will return my permit. |
o0

Thread #1 Thread #2 44



Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,

mutex& permitsLock) {

permitsLock.lock();

if (permits == 0) {
permitsLock.unlock();
permitsCV.wait();
permitsLock.lock();

// (note: not final form of wait)

}

permits--;

permitsLock.unlock();
}

H —

Oh! | should notify Jpermits =1,
that there is a
permit now. -

Thread #2 45

Thread #1



Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,

mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)

permitsLock.lock();

germits——;
permitsLock.unlock();
}
o =
“Attention waiting permits = 1
threads, a permit is —
available!” C 97

46

Thread #1 Thread #2



Deadlock: waitForPermission

permitsCV.wait();

1 —
..I permits = 1 '

____J

Thread #1 Thread #2 47



Deadlock: waitForPermission

permitsCV.wait();

=1
permits = 1

L____J

~ <, 100 years later*®

Thread #1 Thread #2 48



Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();
}
permits--;
permitsLock.unlock();

¥

If we give up the lock before calling wait(), someone could notify before we are

ready, because notifications aren't queued! If that is the last notification, we
may wait forever.

49



Deadlock: waitForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Solution: condition variables are meant for these situations.
e wait() takes a mutex as a parameter
* It will unlock the mutex for us after we are put to sleep.

 When we are notified, it will only return once it has reacquired the mutex for

us.
50



Condition Variable Wait

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

cv.wait() does the following:
1. it puts the caller to sleep and unlocks the given lock, all atomically
2. it wakes up when the cv is signaled
3. upon waking up, it tries to acquire the given lock (and blocks until it's able to do
SO)
4. then, cv.wait returns 51



waltForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Spoiler: there is a race condition here that could lead to negative permits if
multiple threads are waiting on a permit (e.g. say we limit permits to 3).

52



waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,

mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

..I permits = 0 :

____J

~ Thread #1 Thread #2

Thread #3

53



waltForPermission Over-permitting

permitsCV.wait(permitsLock);

..I permits = 0 :

____J

We need to wait
for a permit in

‘ order to eat. ‘
[ PERMIT ]
i

Thread #1 Thread #2 Thread #3  **




waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

¥

Mpermits = 0

All done eating! |
will return my permit.

A A
[ PERMIT ]

Thread #1 Thread #2 Thread #3  >°




waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

¥
Ipermits = 1I
All done eating! | b - d

will return my permit.

S

Thread #1 Thread #2 Thread #3  °°



waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

¥

Oh! | should notify
that there is a
permit now.

I permits = 1 '

L____

o
&

Thread #1 Thread #2 Thread #3  °/



waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,

mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

}
“Attention waiting Mpermits = 1!
threads, a permit is

available!”

58

Thread #1 Thread #2 Thread #3



waltForPermission Over-permitting

permitsCV.wait(permitsLock);

1 —
..I permits = 1 I

____J

&

Thread #1 Thread #2 Thread #3  °°



waltForPermission Over-permitting

permits--;

1 —
..I permits = 1 I

____J

&

Thread #1 Thread #2 Thread #3  ©°



waltForPermission Over-permitting

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

..I permits = 0 :

____J

Thread #1 Thread #3 61



waltForPermission Over-permitting

permitsCV.wait(permitsLock);

..I permits = 0 :

____J

[PERMIT] @
&

/?‘j‘hﬁ

> /A
L7

Thread #1 " Thread #2 Thread #3  ©2



waltForPermission Over-permitting

permits--;

..I permits = 0 :

____J

[PERMIT] @
&

Thread #1 " Thread #2 Thread #3  ©°



waltForPermission Over-permitting

permits--;

| permits = <very large number> |

FAKE -

[PERM'T] PERMIT
?

/?‘j‘hﬁ

Thread #1 " Thread #2 Thread #3  ©*



waltForPermission

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,
mutex& permitsLock) {
permitsLock.lock();
if (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Key Problem: if multiple threads are woken up for one new permit, it's possible
that some of them may have to continue waiting for a permit.
Solution: we must call wait() in a loop, in case we must call it again to wait

longer.

65



Waiting in a Loop

static void waitForPermission(size_t& permits, condition_variable any& permitsCV,

mutex& permitsLock) {
permitsLock.lock();
while (permits == 0) {
permitsCV.wait(permitsLock);
}

permits--;
permitsLock.unlock();

Key Problem: if multiple threads are woken up for one new permit, it's possible

that some of them may have to continue waiting for a permit.
Solution: we must call wait() in a loop, in case we must call it again to wait

longer.
dining-philosophers-with-cv-wait.cc 66




Condition Variable Key Takeaways

A condition variable is a variable that can be shared across threads and used for
one thread to notify other threads when something happens. Conversely, a
thread can also use this to wait until it is notified by another thread.

* We can call wait(lock) to sleep until another thread signals this condition
variable. The condition variable will unlock and re-lock the specified lock for
us.

* This is necessary because we must give up the lock while waiting so another thread may
return a permit, but if we unlock before waiting, there is a race condition.

e We can call notify_all() to send a signal to waiting threads and wake them up.

* We call wait(lock) in a loop in case we are woken up but must wait longer
* This could happen if multiple threads are woken up for a single new permit.

67



Condition Variables

1. Identify a single kind of event that we need to wait / notify for
Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting for
that event to happen or triggering that event

4. l|dentify who will notify that this happens, and have them notify via the
condition variable

5. ldentify who will wait for this to happen, and have them wait via the
condition variable

68



Recap

* Recap: mutexes and dining philosophers
* Encoding resource constraints
* Condition Variables

Next time: multithreading patterns

Lecture 14 takeaway:

Condition variables let us wait

on an event to occur and
notify other threads that an
event has occurred, all
without busy waiting. We
pass a lock into wait and call
it in a loop to ensure
correctness.

cp -r /afs/ir/class/cslll/lecture-code/lectlsd .

69



