CS111, Lecture 16
Scheduling and Dispatching

Optional reading:

Operating Systems: Principles and Practice (2" Edition): Chapter 7 up
through Section 7.2

[; «} This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
N m C mm i ibuti i i
NG a S kS re O e n d ed Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1

Announcements

e Congratulations on finishing the midterm!
* Assign4 YEAH session tonight 7:30-8:30PM in Gates 403
* No section this week

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?

* Allows us to see how threads are represented and the fairness challenges for
who gets to run next / for how long (next time)

* Shows us what the mechanism looks like for switching between running
threads (today and next time)

* Allows us to understand how locks and condition variables are implemented
(next week)

assignd: implement your own version of thread, mutex and condition_variable!

CS111 Topic 3: Multithreading, Part 2

Implementing
Locks and
Condition Variables

Scheduling and :
Implementing a

Thread Dispatcher

Scheduling and
Dispatching

Dispatching,
Continued

This Lecture Lecture 17 Lecture 18 Lecture 19

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

e Learn about how the operating system keeps track of threads and processes

* Understand the general mechanisms for switching between threads and when
switches occur

Plan For Today

e Overview: Scheduling and Dispatching
* Process and Thread State

* Running a Thread

e Switching Between Threads

* Tracking All Threads

Plan For Today

* Overview: Scheduling and Dispatching

Scheduling And Dispatching

* So far, we have learned about how user programs can create new processes
and spawn threads in those processes

* But how does the operating system manage all of this internally? When we
spawn a new thread or create a new process, what happens?

Key questions we will answer:

e How does t
e How does t
e How does t

he operating system track info for threads and processes?
ne operating system run a thread and switch between threads?

he operating system decide which thread to run next?

Plan For Today

* Process and Thread State

10

Process and Thread State

Key question #1: How does the operating system track info about threads and
processes?

The OS maintains a (private) process control block for each process - a set of
relevant information about its execution. Lives as long as the process does.

* Information about memory used by this process
* File descriptor table
* Info about threads in this process

e Other misc. accounting and info

11

Process and Thread State

Key question #1: How does the operating system track info about threads and
processes?

The OS maintains a (private) process control block for each process - a set of
relevant information about its execution. Lives as long as the process does.

* Information about memory used by this process
* File descriptor table

* Info about threads in this process

e Other misc. accounting and info

12

File Descriptor Table

The file descriptor table is an array of info about open files/resources for this
process. Key idea: a file descriptor is just an index into the file descriptor table!

* An entry in the file descriptor table is really a pointer to an entry in another
table, the open file table.

* The open file table is one array of information about open files/resources
across all processes.

Process Control Blocks

descriptor table for process ID 1000 ., descriptor table for process ID 1001 descriptor table for process ID 1002
4

nicsssssnssl saanneesss B =338

- T o
e e
- " N 1 N ’ x
mode mode w mode w mode r mode w mode r mode rw mode
rrrrrr 0 cursor 0 cursor 0 cursor 0 cursor 0 or 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1
ode ode ode od vnode | vnode ode od

Open file table 13

File Descriptor Table

An entry in the file descriptor table is really a pointer to an entry in another
table, the open file table.

* An open file table entry stores changing info like "cursor"” (how far into file are
we?)

* Multiple file descriptor entries (even across processes!) can point to the same
open file table entry. This is how parents and children share file descriptors.

Process Control Blocks

descriptor table for process ID 1000 ., descriptor table for process ID 1001 descriptor table for process ID 1002
4

nicsssssnssl saanneesss B =338

- T o
e e
- " N 1 N ’ x
mode mode w mode w mode r mode w mode r mode rw mode
rrrrrr 0 cursor 0 cursor 0 cursor 0 cursor 0 or 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1
ode ode ode od vnode | vnode ode od

Open file table 14

File Descriptor Table

An entry in the file descriptor table is really a pointer to an entry in another
table, the open file table.

* This also clarifies what dup2 does; it copies a pointer to a new file descriptor
table index

 All of these data structures are private to the operating system. They are
layered on top of the filesystem data itself.

Process Control Blocks

descriptor table for process ID 1000 ., N descriptor table for process ID 1002 N
NNNEER . N = | [
0 1 \\3 4 5 6 7 8 9 1 / 1 2 / 4 R 6 7 8 9
-(_._',.--""-‘-.-' \\,\ f.xx.-:'jfVE‘_A—"‘SSVS “'I(I‘H"
g J,‘__A:;;-’\){:_:s }I,“ "~"
D / \
W4 ‘
e LV 4 1
mode mode w mode mode rw mode
rrrrrr 0 cursor 0 or 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 1 refcount 1 refcount 1
ode D vnode vnode vnode E’ ode D

Open file table 15

Process and Thread State

Key question #1: How does the operating system track info about threads and
processes?

The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.

* Information about memory used by this process
* File descriptor table
* Info about threads in this process

e Other misc. accounting and info

16

Thread State

* Every process has 1 main thread and can
spawn additional threads.

* Threads are the “unit of execution” —
processes aren’t executed, threads are

Threads share info in PCB plus also have
their own private state in the PCB, e.g.
thread’s stack info

* Recall: there is a register called %rsp that
points to the top of the stack (“stack
pointer”). Non-running threads must
save their %rsp somewhere for later.

Process A
Control Block

Threads

Al
A2
A3

—
\

N

_—

i

N

SP

17

Aside: x86-64 Assembly Refresher

* A register is a 64-bit space inside a processor core.
* Each core has its own set of registers.

e Registers are like “scratch paper” for the processor. Data being calculated or
manipulated is moved to registers first. Operations are performed on
registers.

* Registers also hold parameters and return values for functions.

* Some registers have special responsibilities — e.g. %rsp always stores the
address of the current top of the stack.

* When a thread is being kicked off, it must remember its %rsp value so it knows
where its stack is the next time it runs. (we’ll see how it remembers other
register values later)

18

Plan For Today

* Running a Thread

19

Running a Thread

Key Question #2: How does the operating system run a thread and switch
between threads?

* A processor has 1 or more “cores” - Each core contains a complete CPU
capable of executing a thread

* Typically have more threads than cores, but most may not need to run at any
given point in time (why? They are waiting for something)

 When the OS wants to run a thread, it loads its state (e.g. %rsp and other
registers) into a core, and starts or resumes it

* Problem: once we run a thread, the OS is not running anymore! (e.g. 1 core)
How does it regain control?

20

Regaining Control

There are several ways control can switch back to the OS:

1. “Traps” (events that require OS attention):

1. System calls (like read or waitpid)
2. Errors (illegal instruction, address violation, etc.)
3. Page fault (accessing memory that must be loaded in) — more later...

2. “Interrupts” (events occurring outside current thread):

1. Character typed at keyboard
2. Completion of disk operation
3. Timer —to make sure OS eventually regains control

At this point, OS could then decide to run a different thread.

21

Plan For Today

* Switching Between Threads

22

Switching Between Threads

When the OS regains control, how does it switch to run another thread?

The dispatcher is OS code that runs on each core that switches between threads
* Not a thread — code that is invoked to perform the dispatching function
e Lets a thread run, then switches to another thread, etc.

* Context switch — changing the thread currently running to another thread. We
must save the current thread state and load in the new thread state.

* Context switches are funky — like running a function that, as part of its

execution, switches to a completely different function in a completely different
thread!!

23

Context Switching

Context switch: how do we switch from thread A3 to thread B1?

Threads

A]— |
L\

A3\

_—

T

N

Process A

Control Block

A3 Stack

Core

RO
R1

R:NI::I
P —

Hardware
Registers

B1 Stack

Threads
=

Process B
Control Block

24

Context Switching

Step 1: push all registers besides stack register onto the thread’s stack.

Hardware
Threads _— Registers Threads
AT]| Core L]
Al T—a R0
\ R1
: : N
\ 2 e—
Process A T Process B
Control Block Control Block
Saved
Registers
(all but SP)

A3 Stack B1 Stack .

Context Switching

Step 2: save the stack register into the thread’s state space.

Threads
A1
A2
A3

—
—

N

e

T

N

Process A
Control Block

Core
=
RN———]
P JNp—

A3 Stack

Hardware
Registers

B1 Stack

Threads
[B1]

Process B
Control Block

26

Context Switching

Step 3: load B1’s saved stack register from its thread state space.

Threads

A]— |
L\

A3\

_—

T

N

Process A

Control Block

A3 Stack

Hardware
Registers

B1 Stack

Threads
[B1]

Process B
Control Block

27

Context Switching

Step 4: pop B1’s other registers from its stack space.

Hardware
Threads // Registers Threads
Al Core //
A3 - T—a -
\ R
\ N —
Process A e Process B

Control Block \‘ Control Block

A3 Stack B1 Stack i

Plan For Today

* Tracking All Threads

29

Tracking All Threads

How does the OS track/remember all user threads on the system?

Key idea: at any given time, a thread is in one of three states:

1. Running
2. Blocked — waiting for an event (disk I/0, network connection, etc.)

3. Ready — able to run, but waiting for CPU time

30

Thread States

Threads can either be running, blocked or ready.

* When a thread is created, it starts ready.
* When it is run, it goes from ready -> running

* Maybe it reaches a point where it can’t run anymore (e.g. reading a file from
disk). It goes from running -> blocked

* When the event it’s waiting for has happened, it goes from blocked -> ready or
blocked -> running (if it can get a core immediately)

* Sometimes we might want to interrupt a running thread to run another
thread. It goes from running -> ready

31

Thread States

/ \
=3

Thread States
Why can'’t a thread go .
from ready to blocked? Runni ng
Because in order to
become blocked, it must

run code.
3locked

33

Plan For Today

* Overview: Scheduling and Dispatching | Lecture 16 takeaway: The

* Process and Thread State OS keeps a process control
* Running a Thread block for each process and
e Switching Between Threads uses It to context switch

* Tracking All Threads between threads. To switch

we must freeze frame the
existing register values and
load In new ones.

Next time: more about scheduling and dispatching

34

