
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 16
Scheduling and Dispatching

😷 masks recommended

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 7 up

through Section 7.2

2

Announcements
• Congratulations on finishing the midterm!
• Assign4 YEAH session tonight 7:30-8:30PM in Gates 403
• No section this week

3

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

4

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?
• Allows us to see how threads are represented and the fairness challenges for

who gets to run next / for how long (next time)
• Shows us what the mechanism looks like for switching between running

threads (today and next time)
• Allows us to understand how locks and condition variables are implemented

(next week)

CS111 Topic 3: Multithreading

assign5: implement your own version of thread, mutex and condition_variable!

5

CS111 Topic 3: Multithreading, Part 2

Scheduling and
Dispatching

Scheduling and
Dispatching,
Continued

Implementing a
Thread Dispatcher

Implementing
Locks and

Condition Variables

This Lecture Lecture 17 Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

6

Learning Goals
• Learn about how the operating system keeps track of threads and processes
• Understand the general mechanisms for switching between threads and when

switches occur

7

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

8

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

9

Scheduling And Dispatching
• So far, we have learned about how user programs can create new processes

and spawn threads in those processes
• But how does the operating system manage all of this internally? When we

spawn a new thread or create a new process, what happens?

Key questions we will answer:
• How does the operating system track info for threads and processes?
• How does the operating system run a thread and switch between threads?
• How does the operating system decide which thread to run next?

10

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

11

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block for each process - a set of
relevant information about its execution. Lives as long as the process does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

12

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block for each process - a set of
relevant information about its execution. Lives as long as the process does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

13

File Descriptor Table
The file descriptor table is an array of info about open files/resources for this
process. Key idea: a file descriptor is just an index into the file descriptor table!
• An entry in the file descriptor table is really a pointer to an entry in another

table, the open file table.
• The open file table is one array of information about open files/resources

across all processes.

14

File Descriptor Table
An entry in the file descriptor table is really a pointer to an entry in another
table, the open file table.
• An open file table entry stores changing info like "cursor" (how far into file are

we?)
• Multiple file descriptor entries (even across processes!) can point to the same

open file table entry. This is how parents and children share file descriptors.

15

File Descriptor Table
An entry in the file descriptor table is really a pointer to an entry in another
table, the open file table.
• This also clarifies what dup2 does; it copies a pointer to a new file descriptor

table index
• All of these data structures are private to the operating system. They are

layered on top of the filesystem data itself.

16

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

17

Thread State
• Every process has 1 main thread and can

spawn additional threads.
• Threads are the “unit of execution” –

processes aren’t executed, threads are

Threads share info in PCB plus also have
their own private state in the PCB, e.g.
thread’s stack info
• Recall: there is a register called %rsp that

points to the top of the stack (“stack
pointer”). Non-running threads must
save their %rsp somewhere for later.

18

Aside: x86-64 Assembly Refresher
• A register is a 64-bit space inside a processor core.
• Each core has its own set of registers.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.
• Registers also hold parameters and return values for functions.
• Some registers have special responsibilities – e.g. %rsp always stores the

address of the current top of the stack.
• When a thread is being kicked off, it must remember its %rsp value so it knows

where its stack is the next time it runs. (we’ll see how it remembers other
register values later)

19

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

20

Running a Thread
Key Question #2: How does the operating system run a thread and switch
between threads?
• A processor has 1 or more “cores” - Each core contains a complete CPU

capable of executing a thread
• Typically have more threads than cores, but most may not need to run at any

given point in time (why? They are waiting for something)
• When the OS wants to run a thread, it loads its state (e.g. %rsp and other

registers) into a core, and starts or resumes it
• Problem: once we run a thread, the OS is not running anymore! (e.g. 1 core)

How does it regain control?

21

Regaining Control
There are several ways control can switch back to the OS:
1. “Traps” (events that require OS attention):

1. System calls (like read or waitpid)
2. Errors (illegal instruction, address violation, etc.)
3. Page fault (accessing memory that must be loaded in) – more later…

2. “Interrupts” (events occurring outside current thread):
1. Character typed at keyboard
2. Completion of disk operation
3. Timer – to make sure OS eventually regains control

At this point, OS could then decide to run a different thread.

22

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

23

Switching Between Threads
When the OS regains control, how does it switch to run another thread?

The dispatcher is OS code that runs on each core that switches between threads
• Not a thread – code that is invoked to perform the dispatching function
• Lets a thread run, then switches to another thread, etc.
• Context switch – changing the thread currently running to another thread. We

must save the current thread state and load in the new thread state.
• Context switches are funky – like running a function that, as part of its

execution, switches to a completely different function in a completely different
thread!!

24

Context Switching
Context switch: how do we switch from thread A3 to thread B1?

25

Context Switching
Step 1: push all registers besides stack register onto the thread’s stack.

26

Context Switching
Step 2: save the stack register into the thread’s state space.

27

Context Switching
Step 3: load B1’s saved stack register from its thread state space.

28

Context Switching
Step 4: pop B1’s other registers from its stack space.

29

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

30

Tracking All Threads
How does the OS track/remember all user threads on the system?

Key idea: at any given time, a thread is in one of three states:
1. Running
2. Blocked – waiting for an event (disk I/O, network connection, etc.)
3. Ready – able to run, but waiting for CPU time

31

Thread States
Threads can either be running, blocked or ready.

• When a thread is created, it starts ready.
• When it is run, it goes from ready -> running
• Maybe it reaches a point where it can’t run anymore (e.g. reading a file from

disk). It goes from running -> blocked
• When the event it’s waiting for has happened, it goes from blocked -> ready or

blocked -> running (if it can get a core immediately)
• Sometimes we might want to interrupt a running thread to run another

thread. It goes from running -> ready

32

Thread States

Running

Ready Blocked

33

Thread States

Running

Ready Blocked

Why can’t a thread go
from ready to blocked?

Because in order to
become blocked, it must
run code.

34

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads
• Tracking All Threads

Next time: more about scheduling and dispatching

Lecture 16 takeaway: The
OS keeps a process control
block for each process and
uses it to context switch
between threads. To switch
we must freeze frame the
existing register values and
load in new ones.

