CS111, Lecture 17
Scheduling and Dispatching, Continued

[; «} This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
N m C mm i ibuti i i
NG a S kS re O e n d ed Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading, Part 2

Scheduling and Implementing
Dispatching,

Continued

Implementing a
Thread Dispatcher

Scheduling and
Dispatching

Locks and
Condition Variables

Last Lecture This Lecture Lecture 18 Lecture 19

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

e Understand the general mechanisms for switching between threads
* Explore the tradeoffs in deciding which threads get to run and for how long

Plan For Today

* Recap: Process Control Blocks and Threads
* Demo: Context Switch

* Recap: Thread States

e Scheduling Threads

cp -r /afs/ir/class/cslll/lecture-code/lectl?7 . 5

Plan For Today

* Recap: Process Control Blocks and Threads

cp -r /afs/ir/class/cslll/lecture-code/lectl?7 . 6

Process and Thread State

Key question: How does OS track info about threads and processes?

The OS maintains a process control block for each process - a set of relevant
information about its execution. Lives as long as the process does.

* Information about memory used by this process
* File descriptor table
e Other misc. accounting and info

e State specific to each thread

File Descriptor Table

The file descriptor table is an array of info about open files/resources for this
process. Key idea: a file descriptor is just an index into the file descriptor table!

* An entry in the file descriptor table is really a pointer to an entry in another
table, the open file table.

* The open file table is one array of information about open files/resources
across all processes.

Process Control Blocks

descriptor table for process ID 1000 ., descriptor table for process ID 1001 descriptor table for process ID 1002
4

nicsssssnssl saanneesss B =338

- T o
e e
- " N 1 N ’ x
mode mode w mode w mode r mode w mode r mode rw mode
rrrrrr 0 cursor 0 cursor 0 cursor 0 cursor 0 or 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1
ode ode ode od vnode | vnode ode od

Open file table

Open File Table

* When we call open in our program; new open file table entry created, new file
descriptor index points to it.

* When we call pipe in our program; 2 new open file table entries created, 2
new file descriptor indexes point to them.

* When we call fork in our program; new PCB, with copy of parent’s FD table; so
all file descriptor indexes point to the same place!

Process Control Blocks

descriptor table for process ID 1000 ., descriptor table for process ID 1001 ., descriptor table for process ID 1002
] ‘ 1 l ‘] e /l y il { / ’ [BN [’ [[_ > »»*‘%Z"Jﬂi“‘lf ’ / ’ \ [[’ ‘ ‘ [
ol \W / 12 4 \s 7 8 9 2 4a\s 6 7 8 9

A"-.,._A_x-"".-‘ \"\ {:':Va*":a B _--~*‘:‘c £
; ,_,)i\ 7
e A_SQ; /,/ A..»*‘”SJA
- " Sl 1 N ’ x
mode mode w mode w mode r mode w mode r mode rw mode
rrrrrr 0 cursor 0 cursor 0 cursor 0 cursor 0 or 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1

Open file table 9

Open File Table

* When we call dup2 in our program, one file descriptor index is copied to
another index (so both point to same open file table entry)

Process Control Blocks

descriptor table for process 1D 1000

NNNEEEEEEN

0 1 3N.4 5 6 7 8 9

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrr

refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1

vnode D vnode ‘ vnode D vnode [:] vnode D vnode El vnode \:‘ vnode D

Open file table 10

Open File Table

* Each open file table entry keeps a reference count, a count of the number of
file descriptor table entries pointing to it.

* This ref count increases whenever a new file descriptor index points to it.

* When we call close in our program, file descriptor index no longer points to
open file table entry, open file table entry’s ref count decremented.

* When open file table entry’s ref count == 0, it’s deleted

Process Control Blocks

descriptor table for process ID 1000 ., descriptor table for process ID 1001 ., descriptor table for process ID 1002
] ‘ 1 l ‘] e /l y il { / ’ [BN [’ [[_ > »»*‘%Z"Jﬂi“‘lf ’ / ’ \ [[’ ‘ ‘ [
ol \W / 12 4 \s 7 8 9 2 4a\s 6 7 8 9

A"-.,._A_x-"".-‘ \"\ {:':Va*":a B _--~*‘:‘c £
; ,_,)i\ 7
e A_SQ; /,/ A..»*‘”SJA
- " Sl 1 N ’ x
mode mode w mode w mode r mode w mode r mode rw mode
rrrrrr 0 cursor 0 cursor 0 cursor 0 cursor 0 or 32 cursor 0 cursor 256
refcount 3 refcount 3 refcount 3 refcount 1 refcount 1 refcount 1 refcount 1 refcount 1

Open file table 11

& When poll is active, respond at pollev.com/cs111
3 Text CS111 to 22333 once to join

Parent makes a pipe, spawns a child: what is read end's ref
count?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& Poll locked. Responses not accepted.

Parent makes a pipe, spawns a child: what is read end's ref
count?

A W N

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

& Poll locked. Responses not accepted.

Parent makes a pipe, spawns a child: what is read end's ref
count?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Thread State

e All main info in the PCB (e.g. memory
info for the entire process) is relevant to
all threads

e Each thread also has some of its own
private info (e.g. stack location)

* When the OS wants to run a thread, it
loads its state and starts or resumes it

* How does the OS regain control?

Process A
Control Block

Threads

Al
A2
A3

—
\

N

_—

i

N

SP

15

Regaining Control

There are several ways control can switch back to the OS:

1. “Traps” (events that require OS attention):

1. System calls (like read or waitpid)
2. Errors (illegal instruction, address violation, etc.)
3. Page fault (accessing memory that must be loaded in) — more later...

2. “Interrupts” (events occurring outside current thread):

1. Character typed at keyboard
2. Completion of disk operation
3. Timer —to make sure OS eventually regains control

At this point, OS could then decide to run a different thread.

16

Switching Between Threads

When the OS regains control, how does it switch to run another thread?

* Key idea: we must load the thread’s state onto a processor core and run it

* State = registers

* Registers store data being manipulated by the core
* %rsp stores current top of stack
e Stack remembers what function to continue executing

* If we can load this thread’s %rsp + other saved registers, then it can resume
right where it left off

* Context switch — changing the thread currently running to another thread. We
must save the current thread state and load in the new thread state.

17

Switching Between Threads

When the OS regains control, how does it switch to run another thread?

The dispatcher is OS code that runs on each core that switches between threads
and does context switches

* You're going to write parts of one on assign5!

e Context switches are funky — like running a function that, as part of its

execution, switches to a completely different function in a completely different
thread!!

18

Context Switching

Context switch: how do we switch from thread A3 to thread B1?

Threads

A]— |
L\

A3\

_—

T

N

Process A

Control Block

A3 Stack

Core

RO
R1

R:NI::I
P —

Hardware
Registers

B1 Stack

Threads
=

Process B
Control Block

19

Context Switching

Step 1: push all registers besides stack register onto the thread’s stack.

Hardware
Threads _— Registers Threads
AT]| Core L]
Al T—a R0
\ R1
: : N
\ 2 e—
Process A T Process B
Control Block Control Block
Saved
Registers
(all but SP)

A3 Stack B1 Stack 2o

Context Switching

Step 2: save the stack register into the thread’s state space.

Threads
A1
A2
A3

—
—

N

e

T

N

Process A
Control Block

Core
=
RN———]
P JNp—

A3 Stack

Hardware
Registers

B1 Stack

Threads
[B1]

Process B
Control Block

21

Context Switching

Step 3: load B1’s saved stack register from its thread state space.

Threads

A]— |
L\

A3\

_—

T

N

Process A

Control Block

A3 Stack

Hardware
Registers

B1 Stack

Threads
[B1]

Process B
Control Block

22

Context Switching

Step 4: pop B1’s other registers from its stack space.

Hardware
Threads // Registers Threads
Al Core //
A3 - T—a -
\ R
\ N —
Process A e Process B

Control Block \‘ Control Block

A3 Stack B1 Stack .

Demo: context-switch.cc

Plan For Today

* Recap: Thread States

cp -r /afs/ir/class/cslll/lecture-code/lectl?7 . 25

Tracking All Threads

Key idea: at any given time, a thread is in one of three states:

1. Running
2. Blocked — waiting for an event (disk I/0, network connection, etc.)

3. Ready — able to run, but waiting for CPU time

26

Thread States

/ \
=3

Thread States

When a thread is created,
it starts out ready.

28

Thread States

When the OS lets a .
thread run on a core, the RU NnNi ng

thread goes to running.

29

Thread States

If the thread can still run
but the OS needs to run
another thread, the thread
Is taken off the core and
goes back to ready.

30

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

Thread States

Running

31

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

Thread States

o

Blocked

32

Thread States

If the event the thread is
waiting for happens, and Runni ng
a core is Immediately
available for it, it switches
back to running.

33

Thread States

If the event the thread is
waiting for happens, but
the thread can'’t run yet, it
switches to ready.

34

It's not possible to go
from ready to blocked,
because in order for a
thread to become blocked
It must do work that tells it
it must wait for
something.

Thread States

35

Thread States
Key question: if we have
many ready threads, how Runni ng
do we decide who to run

next, and for how long?
EEL VAN ¢ Blocked

36

Plan For Today

* Scheduling Threads

cp -r /afs/ir/class/cslll/lecture-code/lectl?7 . 37

First-come-first-serve

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.
Add threads to the back. Run the first thread on the queue until it exits or

blocks.

Problem: thread could run away with core and run forever!

38

Round Robin

Problem: thread could run away with core and run forever!

Solution: define a time slice, the max run time without a context switch (e.g.
10ms).

Idea: round robin scheduling — run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?

39

Plan For Today

* Recap: Process Control Blocks and Lecture 17 takeaway:
Threads - Context switching saves the
Demo: Context Switc current thread state and

* Recap: Thread States switches to a completely

* Scheduling Threads different stack frame! When

we have many ready threads,
how do we decide which gets
to run, and for how long?

Next time: more discussions about
scheduling, and implementing dispatchers.

40

