
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 18
Scheduling and Preemption

😷 masks recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 2

Scheduling and
Dispatching

Scheduling and
Dispatching,
Continued

Scheduling and
Dispatching, Part 3

Implementing
Locks and

Condition Variables

Lecture 16 Last Lecture Today Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

4

Learning Goals
• Explore the tradeoffs in deciding which threads get to run and for how long
• Learn about the assign5 infrastructure and how to implement a dispatcher

with preemption

5

Plan For Today
• Recap: Context Switching
• Scheduling Threads
• Preemption and Interrupts

6

Plan For Today
• Recap: Context Switching
• Scheduling Threads
• Preemption and Interrupts

7

Context Switching
A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.
1. Push all registers besides stack onto current thread’s stack
2. Save the current stack register (rsp) into the thread’s state space
3. Load the other thread’s saved stack register from its state space into rsp
4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

8

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

9

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

1. Push all registers besides stack
onto current thread’s stack

10

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

2. Save the current stack register
(rsp) into the thread’s state space

11

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

3. Load the other thread’s saved stack
register from its state space into rsp

12

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

4. Pop registers off the other thread’s stack

13

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

Now we return back to the function in the new
thread that called context_switch previously!
(recall: ret pops the address off the stack for the
instruction we should resume at in the caller)

14

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

15

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

16

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a
function in the current thread

We exit to a call from a function in the new thread!

17

Plan For Today
• Recap: Context Switching
• Scheduling Threads
• Preemption and Interrupts

18

First-come-first-serve
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.
Add threads to the back. Run the first thread on the queue until it exits or
blocks (no timer).

Problem: thread could run away with core and run forever!

19

Round Robin
Problem: thread could run away with core and run forever!
Solution: define a time slice, the max run time without a context switch (e.g.
10ms).

Idea: round robin scheduling – run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?
Thought: we want to run many threads in the amount of time for human
response time, so e.g. keystroke seems instantaneous. So why not make the
time slice microscopically small?

20

Round Robin
Idea: round robin scheduling – run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice? Why not make it microscopically small?
If too small, context switch costs are very high, waste cores

Why not make it very large?
If too large, slow response, threads can monopolize cores

Try to balance: usually in 5-10ms range, Linux is 4ms

21

Scheduling Algorithms
How do we decide whether a scheduling algorithm is good?
• Minimize response time (time to useful result)

• e.g. keystroke -> key appearing, or “make” -> program compiled
• Assume useful result is when the thread blocks or completes

• Use resources efficiently
• keep cores + disks busy
• low overhead (minimize context switches)

• Fairness (e.g. with many users, or even many jobs for one user)

22

Comparing FCFS/RR: Scenario 1

23

Comparing FCFS/RR: Scenario 1

24

Comparing FCFS/RR: Scenario 1

Is RR always
better than FCFS?

25

Comparing FCFS/RR: Scenario 2

26

Comparing FCFS/RR: Scenario 2

27

What’s the optimal
approach if we want to

minimize average
response time?

28

Shortest Remaining Processing Time
What would it look like if we optimized for completion time? (time to finish, or
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to
completion. This is the optimal solution for minimizing average response time.

29

Evaluating SRPT

30

Evaluating SRPT

31

Evaluating SRPT

32

Evaluating SRPT

33

Shortest Remaining Processing Time
SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Respond with your thoughts on PollEv:
pollev.com/cs111 or text CS111 to 22333 once to join.

34

35

Shortest Remaining Processing Time
SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future…)
Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run (“starvation”)

36

SRPT
Another advantage of SRPT: improves overall resource utilization
• “I/O-Bound” - the time to complete them is dictated by how long it takes for

some external mechanism to complete its work (disk, network)
• “CPU-Bound - the time to complete them is dictated by how long it takes us to

do the CPU computation
• If a thread is I/O-Bound – e.g. constantly reading from disk (frequently waits

for disk), it will get priority vs. thread that needs lots of CPU time – CPU
Bound.

Gives preference to those who need the least.

Problem: how can we get close to SRPT but without having to predict the
future or neglect certain threads?

37

Priority-Based Scheduling
Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.
• Behavior tends to be consistent
• If a thread runs for a long time without blocking, it’s likely to continue running

38

Priority-Based Scheduling
Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run. We’ll
have 1 ready queue for each priority, and always run highest-priority threads.
• Overall idea: threads that aren't using much CPU time stay in the higher-

priority queues, threads that are migrate to lower-priority queues.
• After blocking, thread starts in highest priority queue
• If a thread reaches the end of its time slice without blocking it moves to the

next lower queue.
Problem: could still neglect long-running threads!

39

Priority-Based Scheduling
Idea: let’s make threads have priorities that adjust over time as they run. We’ll
have 1 ready queue for each priority, and always run highest-priority threads.
Problem: could still neglect long-running threads!

Let’s keep track of recent CPU usage per thread. If a thread hasn’t run in a long
time, its priority goes up. And if it has run a lot recently, priority goes down.
(4.4 BSD Unix used this, ideas carried forward)
• No more neglecting threads: a thread that hasn’t run in a long time will get its

priority increased
• If there are many equally-long threads that want to run, the priorities even out

over time, at a kind of “equilibrium”

40

Plan For Today
• Recap: Context Switching
• Scheduling Threads
• Preemption and Interrupts

41

Preemption and Interrupts
On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.
• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.
• Fires a timer interrupt at specified interval

42

Plan For Today
• Recap: Context Switching
• Scheduling Threads
• Preemption and Interrupts

Next time: preemption and
implementing mutexes

Lecture 18 takeaway: For
scheduling, we want to
minimize response time, use
resources efficiently, and be
fair. SRPT is optimal, and we
want to get close to that. To
implement preemption, we
can use a timer and context
switch if needed when it fires.

