CS111, Lecture 18

Scheduling and Preemption

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

@ m a S kS re CO m m e n d e\d—) Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading, Part 2

Scheduling and Implementing
Dispatching,

Continued

Scheduling and
Dispatching, Part 3

Scheduling and
Dispatching

Locks and
Condition Variables

Lecture 16 Last Lecture Today Lecture 19

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

* Explore the tradeoffs in deciding which threads get to run and for how long

* Learn about the assign5 infrastructure and how to implement a dispatcher
with preemption

Plan For Today

* Recap: Context Switching
e Scheduling Threads
* Preemption and Interrupts

Plan For Today

* Recap: Context Switching

Context Switching

A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.

1.

2.
3.
A

Push all registers besides stack onto current thread’s stack

Save the current stack register (rsp) into the thread’s state space

Load the other thread’s saved stack register from its state space into rsp
Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

Context Switching

pushqg %rbp

pushqg %rbx

pushqg %rl2

pushq %ril3

pushq %ril4

pushq %rl5

movq %rsp,o0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %rl5

popq %»rla

popq %ril3

popq %rl2

popq %rbx

popq %rbp

ret

pushq %rbp
pushqg %rbx
pushg %ril2
pushg %ri3
pushg %ril4
pushg %ri5

Context Switching

1. Push all registers besides stack
onto current thread’s stack

Context Switching

2. Save the current stack register

%rsp,0x2000 (%rdi : ,
movq %rsp,@x2000(%rd1) (rsp) into the thread’s state space

10

Context Switching

movq 0x2000(%rsi),%rsp 3. Load the other thread’s saved stack
register from its state space into rsp

11

Context Switching

popq %rl5
popq %rla
popq %rl3 :
popq %ri2 4. Pop registers off the other thread’s stack
popq %rbx
popq %rbp

12

Context Switching

Now we return back to the function in the new
thread that called context_switch previously!
(recall: ret pops the address off the stack for the

ret . . :
instruction we should resume at in the caller)

'3

Context Switching

pushqg %rbp

pushqg %rbx

pushqg %rl2

pushq %ril3

pushq %ril4

pushq %rl5

movq %rsp,o0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %rl5

popq %»rla

popq %ril3

popq %rl2

popq %rbx

popq %rbp

ret

14

pushqg %rbp
pushq %rbx
pushg %rl2
pushqg %rl3
pushq %ril4
pushq %ril15

Context Switching

we start executing on one stack...

movqg %rsp,0x2000(%rdi)
movqg 0x2000(%rsi),%rsp

popq %rl5
popq %»rla
popq %ril3
popq %rl2
popq %rbx
popq %rbp
ret

and end executing on another!

15

Context Switching

pushq %rbp = We enter via a call from a

Eﬂzﬂg jﬁtl’;(function in the current thread

pushq %ril3

pushq %ril4

pushq %rl5

movq %rsp,o0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %rl5

popq %»rla

popq %ril3

popq %rl2

popq %rbx

popq %rbp

ret — We exit to a call from a function in the new thread!

16

Plan For Today

* Scheduling Threads

17

First-come-first-serve

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.
Add threads to the back. Run the first thread on the queue until it exits or

blocks (no timer).

Problem: thread could run away with core and run forever!

18

Round Robin

Problem: thread could run away with core and run forever!

Solution: define a time slice, the max run time without a context switch (e.g.
10ms).

Idea: round robin scheduling — run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?

Thought: we want to run many threads in the amount of time for human
response time, so e.g. keystroke seems instantaneous. So why not make the
time slice microscopically small?

19

Round Robin

Idea: round robin scheduling — run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice? Why not make it microscopically small?
If too small, context switch costs are very high, waste cores

Why not make it very large?
If too large, slow response, threads can monopolize cores

Try to balance: usually in 5-10ms range, Linux is 4ms

20

Scheduling Algorithms

How do we decide whether a scheduling algorithm is good?

* Minimize response time (time to useful result)
» e.g. keystroke -> key appearing, or “make” -> program compiled
* Assume useful result is when the thread blocks or completes

e Use resources efficiently

* keep cores + disks busy
* low overhead (minimize context switches)

* Fairness (e.g. with many users, or even many jobs for one user)

21

Comparing FCFS/RR: Scenario 1

Ready Queue

C B A
2ms Tims | 100ms

Comparing FCFS/RR: Scenario 1

Ready Queue

C B A
2ms Tms | 100ms

FIFO

Avg:
101.3

A B| C

>

time 100 101 103

23

Comparing FCFS/RR: Scenario 1

Is RR always
better than FCFS? Ready Queue
C B A ::>
2ms Tms | 100ms
FIFO .
vg:
A B| © 101.3
time 100101 103
Round Robin
A|B|C|A|C A ‘;;f-",'

s

time 2 5 3

24

Comparing FCFS/RR: Scenario 2

Ready Queue

C B A
10ms | 10ms | 10ms

Comparing FCFS/RR: Scenario 2

Ready Queue

C B A
10ms | 10ms | 10ms

FIFO

Avg:
A B C >
o
time 10 20 30
Round Robin
AlBlclAlB|C AlBlclAlB|C A;’g'

e
time 28 29 30

26

What's the optimal
approach if we want to
minimize average

response time?

Shortest Remaining Processing Time

What would it look like if we optimized for completion time? (time to finish, or
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to
completion. This is the optimal solution for minimizing average response time.

28

Evaluating SRPT

Ready Queue
C B A
2ms 1ms | 100ms
FIFO
Avg:
A Bl C | 1013
e
time 100101 103
Round Robin
Avg:
A BIC A|IC A 36.7

time 2 5 103

29

Evaluating SRPT

Ready Queue
C B A
2ms 1ms | 100ms
FIFO
Avg:
A Bl C | 1013
-
time 100101 103
Round Robin
Avg:
AIB|C|A|C A 36.7
e
time 2 5 103
SRPT
Avg:
B| C A 35.7

30

Evaluating SRPT

Ready Queue
S I N
10ms | 10ms | 10ms
FIFO A
vg:
A B C 20
|
time 10 20 30
Round Robin
AlB|C|A|B|C AlB|C|A|B|c| A

e
time 28 29 30

31

Evaluating SRPT

Ready Queue
C B A
10ms [10ms | 10ms
FIFO
A B
o
time 10 20 30
Round Robin
A|B|C|A C AIB|C|IA|B|C
-
time 28 29 30
SRPT
A B
.
time 10 20 30

Avg:
20

Avg:
29

Avg:
20

32

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Respond with your thoughts on PollEv:
pollev.com/cs111 or text CS111 to 22333 once to join.

33

What are some problems/challenges with the SRPT

approach?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future...)

Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run (“starvation”)

35

SRPT

Another advantage of SRPT: improves overall resource utilization

e “|/O-Bound” - the time to complete them is dictated by how long it takes for
some external mechanism to complete its work (disk, network)

e “CPU-Bound - the time to complete them is dictated by how long it takes us to
do the CPU computation

* |If a thread is I/O-Bound — e.g. constantly reading from disk (frequently waits
for disk), it will get priority vs. thread that needs lots of CPU time — CPU

Bound.
Gives preference to those who need the least.

Problem: how can we get close to SRPT but without having to predict the
future or neglect certain threads? e

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.
* Behavior tends to be consistent

* If a thread runs for a long time without blocking, it’s likely to continue running

37

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run. We'll
have 1 ready queue for each priority, and always run highest-priority threads.

e Overall idea: threads that aren't using much CPU time stay in the higher-
priority queues, threads that are migrate to lower-priority queues.

» After blocking, thread starts in highest priority queue

* If a thread reaches the end of its time slice without blocking it moves to the
next lower queue.

Problem: could still neglect long-running threads!

38

Priority-Based Scheduling

Idea: let’s make threads have priorities that adjust over time as they run. We'll
have 1 ready queue for each priority, and always run highest-priority threads.

Problem: could still neglect long-running threads!

Let’s keep track of recent CPU usage per thread. If a thread hasn’t runin a long
time, its priority goes up. And if it has run a lot recently, priority goes down.
(4.4 BSD Unix used this, ideas carried forward)

* No more neglecting threads: a thread that hasn’t run in a long time will get its
priority increased

* If there are many equally-long threads that want to run, the priorities even out
over time, at a kind of “equilibrium”

39

Plan For Today

* Preemption and Interrupts

40

Preemption and Interrupts

On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

41

Plan For Today

* Recap: Context Switching Lecture 18 takeaway: For
* Scheduling Threads scheduling, we want to
* Preemption and Interrupts minimize response time, use

resources efficiently, and be
fair. SRPT is optimal, and we
want to get close to that. To
implement preemption, we
Next time: preemption and can use a timer and context
implementing mutexes switch If needed when it fires.

42

