CS111], Lecture 19

Preemption and Implementing Locks

[; «} This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
N m C mm i ibuti i i
NG a S kS re O e n d ed Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading, Part 2

Scheduling and

: . Scheduling and
Dispatching, . preemp'ﬁon

Scheduling and Preemption

Dispatching and Locks

Continued

Lecture 16 Lecture 17 Last Lecture Today

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

* Learn about the assign5 infrastructure and how to implement a dispatcher
with preemption

» See how our understanding of thread dispatching/scheduling allows us to
implement locks

Plan For Today

* Recap: Scheduling
* Preemption and Interrupts
* Implementing Locks

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 5

Plan For Today

* Recap: Scheduling

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 6

Scheduling Algorithms

How do we decide whether a scheduling algorithm is good?

* Minimize response time (time to useful result)
» e.g. keystroke -> key appearing, or “make” -> program compiled
* Assume useful result is when the thread blocks or completes

e Use resources efficiently

* keep cores + disks busy
* low overhead (minimize context switches)

* Fairness (e.g. with many users, or even many jobs for one user)

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

We discussed 4 main designs:

1.

First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add
threads to the back, run thread from front until completion or blocking.

Round Robin: run thread for one time slice, then add to back of queue if
wants more time

Shortest Remaining Processing Time (SRPT): pick the thread that will
complete or block the soonest and run it to completion.

Priority-Based Scheduling: threads have priorities, and we have one ready
queue per priority. Threads adjust priorities based on time slice usage, or
based on recent CPU usage (4.4 BSD Unix)

Plan For Today

* Preemption and Interrupts

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 9

Preemption and Interrupts

On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

10

Timer Demo

atomic<size t> counter(9);

void timer_ interrupt _handler() {
cout << "Timer interrupt occurred with counter
<< endl;

<< counter

¥

int main(int argc, char *argv[]) {
// specify microsecond interval and function to call
timer_init(500000, timer_ interrupt handler);
while (true) {
counter++;
}

interrupt.cc L

Timers and Preemption

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

12

Demo: context-switch-
preemption-buggy.cc

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler.

When the timer handler finishes, interrupts are re-enabled.

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

Solution: manually enable interrupts when a thread is first run.

14

Disabling/Enabling Interrupts

The assignment starter code provides the following:
void intr_enable(bool on);

There is also a provided variable type IntrGuard that is like a unique_lock but for

interrupts; it disables interrupts when created, and enables them when it is
destroyed.

Interrupts are a global state — not per-thread.

15

Enabling Interrupts

void other func() {
intr_enable(true);

while (true) {
cout << "Other thread here! Hello." << endl;

On assign5: when a program creates a thread and gives you the function that
thread should run, you will run that thread initially by enabling interrupts first

and then running their specified function.

16

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

17

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

18

Enabling/Disabling Interrupts

Thread #1

int main(...) {

v.ur.\ile (true) {

cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

19

Enabling/Disabling Interrupts

Thread #1

int main(...) {

=)

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

while (true) {
cout << "I am the main thread"
<< endl;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

20

Enabling/Disabling Interrupts

Thread #1

int main(...) {

=)

while (true) {

Thread #2

void other func() {
intr_enable(true);
while (true) {
cout << "Other thread here!

cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

TIMER!

<< endl;

timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

21

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =
nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

22

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

23

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

24

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

25

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {

cout <«

"I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

TIMER!

Thread #2

void other func() {
intr_enable(true);
while (true) {

cout << "Other thread here!
<< endl;

timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

26

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

=)

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

27

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

28

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

29

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

‘}

Thread #2

void other func() {
intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

30

Enabling/Disabling Interrupts

Thread #1

int main(...) {

=)

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

while (true) {
cout << "I am the main thread"
<< endl;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

31

Enabling/Disabling Interrupts

Thread #1

int main(...) {

=)

while (true) {

Thread #2

void other func() {
intr_enable(true);
while (true) {
cout << "Other thread here!

cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

TIMER!

<< endl;

timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

32

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

33

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

34

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

35

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

¥

m)

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

36

Enabling/Disabling Interrupts

Thread #1

int main(...) {

while (true) {
cout << "I am the main thread"
<< endl;

¥

void timer _interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning thread;
nonrunning thread = temp;

context_switch(*nonrunning thread,
*current_thread);

¥

Thread #2

void other func() {

intr_enable(true);
while (true) {
cout << "Other thread here!

Hello." << endl;

¥

¥

void timer_interrupt_handler() {

Thread *temp = current_thread;
current_thread =

nonrunning thread;

nonrunning thread = temp;

context_switch(*nonrunning thread,

*current_thread);

¥

37

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No —if a thread is paused, that means when it was running the timer handler
was called and it context switched to another thread. Therefore, when that
thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

38

Another trigger that may switch threads is a function you will implement called
yield.

* Yield is an assign5 function that can be called by a thread to give up the CPU
voluntarily even though it can still do work (how considerate!)

 When you implement yield, the same idea applies for interrupt re-enabling as
for the timer handler.

39

On assign5, there are other places where interrupts can cause complications.

* E.g. we could be in the middle of adding to the ready queue, but then the
timer fires and we go to remove something from the ready queue!

* This sounds like a race condition problem we can solve with mutexes!....right?

* Not in this case — because we are the OS, and we implement mutexes! And
they rely on the thread dispatching code in this assighment.

* Therefore, the mechanism for avoiding race conditions is to enable/disable
interrupts when we don’t want to be interrupted (e.g. by timer).

40

Plan For Today

* Implementing Locks

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 41

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked
* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

42

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked
* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness). (Hint: C++ has a
built-in queue data structure)

43

Lock

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::1lock() {
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

Lock

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

Inst 1abl . :
{ét Tgcigée!g[ﬁla > Wait — we could be interrupted by

ThreadQueue q; interrupts! (E.g. timer). We need to
prevent that.

void Lock::1lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

Lock

// Instance variables
int locked = ©; Where should we re-enable

ThreadQueue g; interrupts?

void Lock::1lock() {
intr_enable(false);
if (!'locked) {
locked = 1;
} else {

g.add(currentThread);
blockThread(); // block/switch to next ready thread

46

Lock

// Instance variables
int locked = ©; Where should we re-enable

ThreadQueue g; interrupts?

void Lock::1lock() {

intr_enable(false);

if (!'locked) {
locked = 1;

} else {
g.add(currentThread);
intr_enable(true); // ??
blockThread(); // block/switch to next ready thread

47

Lock

// Instance variliables

int locked = 0; Where should we re-enable
ThreadQueue gq; interrupts?

void Lock::1lock() {
intr_enable(false); What possible problem would arise

if (!locked) { if we re-enabled interrupts before
locked = 1;

) else { blocking?
q.add(currentThread);
intr_enable(true); // ?? | Respond with your thoughts on
\ blockThread(); // block/switpq gy, pollev.com/cs111 or text

} CS111 to 22333 once to join.

48

What possible problem would arise if we re-enabled

interrupts before blocking?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Lock

// Instance variliables

int locked = ©; Where should we re-enable
ThreadQueue q; interrupts?
void Lock::1lock() {
intr _enable(false); If we re-enable before blocking, it’s
1t (iloikedz { . possible that another thread
\ elscex{ed = b swoops in and unlocks the lock and
q.add(currentThread); then we block, possibly forever.

intr_enable(true); // ??
blockThread(); // block/switch to next ready thread

50

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::1lock() {
intr_enable(false);
if (!locked) {
locked = 1;
} else {

q.add(currentThread);

blockThread();
}

intr_enable(true);

Lock

// block/swit

We must re-enable interrupts when
we get the lock. This means that
once a thread unblocks to acquire
the lock, it wakes up after

blockThread() and re-enables
interrupts. It also assumes that the
thread we switch to once we block
will also re-enable interrupts (e.g.
maybe it was paused by a timer).

51

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty() {
locked = 90;
} else {
unblockThread(q.remove()); // add to ready queue
}

52

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (q.empty() {
locked = 9;
} else {
unblockThread(q.remove()); // add to ready queue
}

53

Plan For Today

* Recap: Scheduling Lecture 19 takeaway: To
* Preemption and Interrupts implement preemption and
* Implementing Locks locks, we must make sure to

correctly enable and disable
interrupts. Locks consist of a
waiting queue and
redispatching to make

Next time: more about locks and threads sleep.
condition variables

54

