
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 19
Preemption and Implementing Locks

😷 masks recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 2

Scheduling and
Dispatching

Scheduling and
Dispatching,
Continued

Scheduling and
Preemption

Preemption
and Locks

Lecture 16 Lecture 17 Last Lecture Today

assign5: implement your own version of thread, mutex and condition_variable!

4

Learning Goals
• Learn about the assign5 infrastructure and how to implement a dispatcher

with preemption
• See how our understanding of thread dispatching/scheduling allows us to

implement locks

5

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

6

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

7

Scheduling Algorithms
How do we decide whether a scheduling algorithm is good?
• Minimize response time (time to useful result)

• e.g. keystroke -> key appearing, or “make” -> program compiled
• Assume useful result is when the thread blocks or completes

• Use resources efficiently
• keep cores + disks busy
• low overhead (minimize context switches)

• Fairness (e.g. with many users, or even many jobs for one user)

8

Scheduling
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.
We discussed 4 main designs:
1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add

threads to the back, run thread from front until completion or blocking.
2. Round Robin: run thread for one time slice, then add to back of queue if

wants more time
3. Shortest Remaining Processing Time (SRPT): pick the thread that will

complete or block the soonest and run it to completion.
4. Priority-Based Scheduling: threads have priorities, and we have one ready

queue per priority. Threads adjust priorities based on time slice usage, or
based on recent CPU usage (4.4 BSD Unix)

9

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

10

Preemption and Interrupts
On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.
• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.
• Fires a timer interrupt at specified interval

11

Timer Demo
atomic<size_t> counter(0);

void timer_interrupt_handler() {
cout << "Timer interrupt occurred with counter " << counter

<< endl;
}

int main(int argc, char *argv[]) {
// specify microsecond interval and function to call
timer_init(500000, timer_interrupt_handler);
while (true) {

counter++;
}

}

interrupt.cc

12

Timers and Preemption
Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

13

Demo: context-switch-
preemption-buggy.cc

14

Interrupts
When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler.
When the timer handler finishes, interrupts are re-enabled.

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

Solution: manually enable interrupts when a thread is first run.

15

Disabling/Enabling Interrupts
The assignment starter code provides the following:

void intr_enable(bool on);

There is also a provided variable type IntrGuard that is like a unique_lock but for
interrupts; it disables interrupts when created, and enables them when it is
destroyed.

Interrupts are a global state – not per-thread.

16

Enabling Interrupts
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here! Hello." << endl;
}

}

On assign5: when a program creates a thread and gives you the function that
thread should run, you will run that thread initially by enabling interrupts first
and then running their specified function.

17

Interrupts
What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

18

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

19

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

20

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

21

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

TIMER! ⏰

22

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

23

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

24

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

25

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

26

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

TIMER! ⏰

27

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

28

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

29

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

30

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

31

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

32

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

TIMER! ⏰

33

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

34

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

35

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
OFF

36

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

37

Enabling/Disabling Interrupts
Thread #1
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Thread #2
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here!
Hello." << endl;

}
}

void timer_interrupt_handler() {
Thread *temp = current_thread;
current_thread =

nonrunning_thread;
nonrunning_thread = temp;

context_switch(*nonrunning_thread,
*current_thread);
}

Interrupts
ON

38

Interrupts
What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No – if a thread is paused, that means when it was running the timer handler
was called and it context switched to another thread. Therefore, when that
thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

39

Yield
Another trigger that may switch threads is a function you will implement called
yield.
• Yield is an assign5 function that can be called by a thread to give up the CPU

voluntarily even though it can still do work (how considerate!)
• When you implement yield, the same idea applies for interrupt re-enabling as

for the timer handler.

40

Interrupts
On assign5, there are other places where interrupts can cause complications.
• E.g. we could be in the middle of adding to the ready queue, but then the

timer fires and we go to remove something from the ready queue!
• This sounds like a race condition problem we can solve with mutexes!....right?
• Not in this case – because we are the OS, and we implement mutexes! And

they rely on the thread dispatching code in this assignment.
• Therefore, the mechanism for avoiding race conditions is to enable/disable

interrupts when we don’t want to be interrupted (e.g. by timer).

41

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

42

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

43

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness). (Hint: C++ has a
built-in queue data structure)

44

Lock
1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

45

Lock
1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

Wait – we could be interrupted by
interrupts! (E.g. timer). We need to
prevent that.

46

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

Where should we re-enable
interrupts?

47

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
intr_enable(true); // ??
blockThread(); // block/switch to next ready thread

}
}

Where should we re-enable
interrupts?

48

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
intr_enable(true); // ??
blockThread(); // block/switch to next ready thread

}
}

Where should we re-enable
interrupts?

What possible problem would arise
if we re-enabled interrupts before
blocking?

Respond with your thoughts on
PollEv: pollev.com/cs111 or text
CS111 to 22333 once to join.

49

50

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
intr_enable(true); // ??
blockThread(); // block/switch to next ready thread

}
}

Where should we re-enable
interrupts?

If we re-enable before blocking, it’s
possible that another thread
swoops in and unlocks the lock and
then we block, possibly forever.

51

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
intr_enable(true);

}

We must re-enable interrupts when
we get the lock. This means that
once a thread unblocks to acquire
the lock, it wakes up after
blockThread() and re-enables
interrupts. It also assumes that the
thread we switch to once we block
will also re-enable interrupts (e.g.
maybe it was paused by a timer).

52

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
if (q.empty() {

locked = 0;
} else {

unblockThread(q.remove()); // add to ready queue
}

}

53

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (q.empty() {

locked = 0;
} else {

unblockThread(q.remove()); // add to ready queue
}

}

54

Plan For Today
• Recap: Scheduling
• Preemption and Interrupts
• Implementing Locks

Next time: more about locks and
condition variables

Lecture 19 takeaway: To
implement preemption and
locks, we must make sure to
correctly enable and disable
interrupts. Locks consist of a
waiting queue and
redispatching to make
threads sleep.

