
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 2
Introduction to Filesystems

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 11,

Section 12.1, 12.2 and Section 13.3 (up through page 567)

😷 masks required

While you’re waiting – get set up with PollEverywhere!
Visit pollev.stanford.edu to set up your account.

2

PollEverywhere
• Today we’re doing a “trial run” of using PollEverywhere for poll questions

• Not counted for attendance (that starts Friday), just a chance to get a feel for the system
• Participation info posted on Canvas Gradebook after lecture so you can confirm your

responses were recorded

• Responses not anonymized, but we don’t look at specific responses, just
aggregated results and participation totals
• Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in

with your @stanford.edu email – NOT your personal email!
• You can use any device with a web browser, or download the PollEverywhere

app, or respond via text – however, to respond via text you must first log in
via a web browser and add your phone number to your profile.
• Whenever we reach a poll question in the slides, it will automatically activate

the poll and allow you to respond.

https://pollev.stanford.edu/

3

4

Announcements
• Remember to input your section preferences by 5PM Sat! Link is on the course

website (under “Sections”).
• Helper Hours scheduled and starting this week!
• Please let us know about OAE accommodations and midterm conflicts as soon

as you can

5

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

6

Filesystems - How can we design filesystems to manage files on disk, and what
are the tradeoffs inherent in designing them? How can we interact with the
filesystem in our programs?

Why is answering this question important?
• Helps us understand what filesystems do (today and next time)
• Provides insight into the challenges and tradeoffs in designing large systems

(next few lectures)
• Shows us how we can directly manipulate files in our programs (next week)

CS111 Topic 1: Filesystems

assign1: implement layers of the Unix v6 filesystem to read a file from disk given its
path.

7

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 1/
This lecture

This lecture
through lecture 4

Lecture 5 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

8

Learning Goals
• Understand the key responsibilities and requirements of a filesystem
• Get practice identifying tradeoffs in different filesystem designs
• Explore the design of the Unix V6 filesystem

9

Plan For Today
• Filesystems Introduction
• Methods for Storing Files

• Contiguous Allocation
• Linked Files
• Windows FAT
• Multi-level indexes

• The Unix V6 Filesystem
• Inodes

10

Plan For Today
• Filesystems Introduction
• Methods for Storing Files

• Contiguous Allocation
• Linked Files
• Windows FAT
• Multi-level indexes

• The Unix V6 Filesystem
• Inodes

11

Filesystems
A filesystem is the portion of the OS that manages the disk.
• A hard drive (or, more commonly these days, flash storage) is persistent

storage – it can store data between power-offs.

Memory (RAM) Disk
• Fast, but less space
• Byte-addressable: can quickly access

any byte of data by address, but not
individual bits by address

• Not persistent: cannot store data
between power-offs

• Slower, but more space
• Sector-addressable: cannot read/write

just one byte of data – can only
read/write “sectors” of data at a time

• Persistent: stores data between
power-offs

12

Filesystem Functionality
We want to read/write file on disk and have them persist even when the device
is off. This may include operations like:

• creating a new file on disk
• looking up the location of a file on disk
• Reading/editing all or part of an existing file from disk – e.g.,

sequential/random access
• creating folders on disk
• getting the contents of folders on disk
• ...

13

Hard Drives
Magnetic disks (hard drives) have been the
standard storage mechanism for files.
• Spinning, magnetically-coated platters
• Actuator arm positions heads, which can read

and write data on the magnetic surfaces
• Moving parts means risk of damage from

sudden movement, dust, etc.

14

Hard Drives
Hard drives have peculiar performance
characteristics that have a big impact on how
we build filesystems.
• Reading and writing requires seeking (moving

arm to position heads over desired track) and
waiting for desired location to pass
underneath. Want to minimize this time.
• We can only read data in chunks of sectors.

Example of virtualization; making one thing
look like another.

15

Hard Disks are Sector-Addressable

If we are the OS, the hard disk creators might provide this API (“application
programming interface”) – a set of public functions - to interface with the disk:

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

This is all we get! We (the OS) must build a filesystem by layering functions on
top of these to ultimately allow us to read, write, lookup, and modify entire files.

16

Filesystems

Filesystem

Functions for user programs to read/write files

readSector and writeSector

17

Filesystem Challenges
Problems addressed by modern file systems:
• Disk space management:

• Fast access to files (minimize seeks)
• Sharing space between users
• Efficient use of disk space

• Naming: how do users select files?
• Reliability: information must survive OS crashes and hardware failures.
• Protection: isolation between users, controlled sharing.

18

Flash Storage
Recently, flash storage (“SSD”) has become
more popular and commonplace, especially
with the growth in mobile devices.
• Much faster (100x faster access), but more

expensive (5-10x higher cost/bit than disk)
• No moving parts, so more reliable
• Issues with wear-out; once a chunk of the

drive has been erased many times (~100k), it
no longer stores info reliably.
• Typically, still only support reading/writing in

units of sectors.

https://www.samsung.com/us/computing/memory-
storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-
mz-v8p1t0b-am/

19

Plan For Today
• Filesystems Introduction
• Methods for Storing Files

• Contiguous Allocation
• Linked Files
• Windows FAT
• Multi-level indexes

• The Unix V6 Filesystem
• Inodes

20

Sectors and Blocks
A filesystem generally defines its own unit of data, a "block," that it reads/writes
at a time.
• "Sector" = hard disk storage unit
• "Block" = filesystem storage unit (1 or more sectors) - software abstraction

Pros of larger block size? Smaller block size?
• E.g. fewer transfer operations if larger, but smaller files may read in more data

than necessary

Example: the block
size could be defined
as two sectors

21

Storing Files on Disk
Two types of data we will be working with:
1. file payload data - contents of files (e.g. text in documents, pixels in images)
2. file metadata - information about files (e.g. name, size)

Key insight: both must be stored on the hard disk. Otherwise, we will not have
it across power-offs! (E.g. without storing metadata we would lose all filenames
after shutdown). This means some blocks must store data other than payload
data.

22

Storing Files on Disk
Two types of data we will be working with:
1. file payload data - contents of files (e.g. text in documents, pixels in

images)
2. file metadata - information about files (e.g. name, size)

Key insight: both must be stored on the hard disk. Otherwise, we will not have
it across power-offs! (E.g. without storing metadata we would lose all filenames
after shutdown). This means some blocks must store data other than payload
data.

23

Contiguous Allocation
First key question: should we store files contiguously on disk? What would it
look like if we did?
• Called contiguous allocation – allocate a file in one contiguous group of blocks
• For each file, keep track of the number of its first sector and its length
• Keep a free list of unused areas of the disk
• Example: IBM OS/360
• Advantages/drawbacks?

24

Contiguous Allocation
First key question: should we store files contiguously on disk? What would it
look like if we did?
• Called contiguous allocation – allocate a file in one contiguous group of blocks
Advantages:
• simple
• can read sequentially or easily jump to any location in file (“random access”)
• all data in one place (few seeks)

25

Contiguous Allocation
First key question: should we store files contiguously on disk? What would it
look like if we did?
• Called contiguous allocation – allocate a file in one contiguous group of blocks
Disadvantages:
• hard to grow files
• hard to lay out files on disk – we may not be able to squeeze a new file in a

block of free space (fragmentation – occurs when we have space on disk, but
can’t use it to store files)

26

Linked Files
First key question: should we store files contiguously on disk? What would it
look like if we didn’t?
• Problem: we need to know what blocks are associated with what files
One idea: linked files – like a linked list
• Each block contains file data as well as the location of the next block
• For each file, keep track of the number of its first block
• Approximate examples: TOPS-10, Xerox Alto
• Advantages/drawbacks?

27

Linked Files
First key question: should we store files contiguously on disk? What would it
look like if we didn’t?
One idea: linked files – like a linked list
• Each block contains file data as well as the location of the next block
Advantages:
• Easy to grow files
• Easier to fit files in available space – less fragmentation
• Still supports simple sequential access

28

Linked Files
First key question: should we store files contiguously on disk? What would it
look like if we didn’t?
One idea: linked files – like a linked list
• Each block contains file data as well as the location of the next block
Disadvantages:
• Can’t easily jump to any arbitrary location in the file
• Data scattered throughout disk (more seeks)

29

Linked Files
First key question: should we store files contiguously on disk? What would it
look like if we didn’t?
One idea: linked files – like a linked list
• Each block contains file data as well as the location of the next block
Disadvantages:
• Can’t easily jump to any arbitrary location in the file
• Data scattered throughout disk (more seeks)

30

Windows FAT
First key question: should we store files
contiguously on disk? What would it look
like if we didn’t?
Interesting idea: what if we stored all the
links in one big table in memory?
• Windows (DOS) FAT: like linked allocation,

except links aren’t in blocks, they are in a
“file allocation table” in memory and disk
• Still keep track of each file’s first block
• (Still used today for flash sticks, digital

cameras, many embedded devices)
• Advantages/Disadvantages?

free

File Allocation
Table

6 4 3

0
1 File A:

File B:

2
end2

3 end
34

5 end
46

7 free
…

1 2

31

Windows FAT
First key question: should we store files
contiguously on disk? What would it look
like if we didn’t?
• Windows (DOS) FAT: like linked allocation,

except links aren’t in blocks, they are in a
“file allocation table” in memory

Advantages:
• Can more quickly jump to various

locations in a file
• Still supports easy sequential access

free

File Allocation
Table

6 4 3

0
1 File A:

File B:

2
end2

3 end
34

5 end
46

7 free
…

1 2

32

Windows FAT
First key question: should we store files
contiguously on disk? What would it look
like if we didn’t?
• Windows (DOS) FAT: like linked allocation,

except links aren’t in blocks, they are in a
“file allocation table” in memory

Disadvantages:
• Data scattered throughout disk (more

seeks)
• Still need to jump through table to get to

an arbitrary location in the file
• Must store table in memory

free

File Allocation
Table

6 4 3

0
1 File A:

File B:

2
end2

3 end
34

5 end
46

7 free
…

1 2

33

File Payload Data
First key question: should we store files
contiguously on disk? What would it look
like if we didn’t?
• Windows (DOS) FAT: like linked allocation,

except links aren’t in blocks, they are in a
“file allocation table” in memory

Disadvantages:
• Data scattered throughout disk (more

seeks)
• Still need to jump through table to get to

an arbitrary location in the file
• Must store table in memory

free

File Allocation
Table

6 4 3

0
1 File A:

File B:

2
end2

3 end
34

5 end
46

7 free
…

1 2

34

File Payload Data
First key question: should we store files contiguously on disk? What would it
look like if we didn’t?
Interesting idea: what if we stored all the block numbers for a file? That way we
could quickly jump to any point in the file.
• Multi-level indexes: store all block numbers for a given file (but how?)
• Example: 4.3 BSD Unix, Unix V6 Filesystem (~1975)

35

Plan For Today
• Filesystems Introduction
• Methods for Storing Files

• Contiguous Allocation
• Linked Files
• Windows FAT
• Multi-level indexes

• The Unix V6 Filesystem
• Inodes

36

Unix V6 Filesystem
Key Idea: files don’t need to be stored contiguously on disk, but we want to
store all the block numbers that make up the data for a file.
We need somewhere to store information about each file, such as which block
numbers store its payload data. Ideally, this data would be easy to look up as
needed.

37

Inodes
An inode ("index node") is a grouping of data about a single file. It’s stored on
disk, but we can read it into memory when the file is open.
• Some other filesystems (e.g., contiguous allocation/linked files, but not FAT)

store file metadata in inodes, too
• For Unix v6, they store things like file size and an ordered list of block numbers

that store file payload data.
• The Unix v6 filesystem stores inodes on disk together in the inode table for

quick access.

38

Unix V6 Inodes
The Unix v6 filesystem stores inodes on disk together in the inode table for
quick access.
• inodes are stored in a reserved region starting at block 2 (block 0 is "boot

block" containing hard drive info, block 1 is "superblock" containing filesystem
info). Typically, at most 10% of the drive stores metadata.
• Inodes are 32 bytes big, and 1 block = 1 sector = 512 bytes, so 16 inodes/block.
• Filesystem goes from filename to inode number ("inumber") to file data.

39

Unix V6 Inodes
We need inodes to be a fixed size, and not too large. So how should we store
the block numbers? How many should there be?
1. if variable number, there's no fixed inode size
2. if fixed number, this limits maximum file size

The inode design here has space for 8 block numbers, which are stored in
order. (i.e. first block number stores first chunk of file, etc.). But we will see
later how we can build on this to support very large files.

40

Recap
• Filesystems Introduction
• Methods for Storing Files

• Contiguous Allocation
• Linked Files
• Windows FAT
• Multi-level indexes

• The Unix V6 Filesystem
• Inodes

Next time: more about the Unix v6
Filesystem

Lecture 2 takeaway:
Filesystems need to store
both file metadata and
payload data. There are
various ways to store
payload data, each with
different pros/cons. The Unix
V6 filesystem uses inodes to
store file data, including
block numbers.

