CS111, Lecture 2

Introduction to Filesystems

Optional reading:

Operating Systems: Principles and Practice (2" Edition): Chapter 11,
Section 12.1, 12.2 and Section 13.3 (up through page 567)

While you’re waiting — get set up with PollEverywhere!
Visit pollev.stanford.edu to set up your account.

é’: :% m aS kS re u i red This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
h Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

PollEverywhere

* Today we’re doing a “trial run” of using PollEverywhere for poll questions
* Not counted for attendance (that starts Friday), just a chance to get a feel for the system

 Participation info posted on Canvas Gradebook after lecture so you can confirm your
responses were recorded

* Responses not anonymized, but we don’t look at specific responses, just
aggregated results and participation totals

e Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in
with your @stanford.edu email — NOT your personal email!

* You can use any device with a web browser, or download the PollEverywhere
app, or respond via text — however, to respond via text you must first log in
via a web browser and add your phone number to your profile.

* Whenever we reach a poll question in the slides, it will automatically activate
the poll and allow you to respond. 2

https://pollev.stanford.edu/

How are you doing? (This is an open ended question,

answer however you like!)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Announcements

 Remember to input your section preferences by 5PM Sat! Link is on the course
website (under “Sections”).

* Helper Hours scheduled and starting this week!

* Please let us know about OAE accommodations and midterm conflicts as soon
as you can

Topic 1: Filesystems - How can
we design filesystems to manage files

on disk, and what are the tradeoffs
inherent in designing them? How

can we interact with the filesystem in
our programs?

CS111 Topic 1: Filesystems

Filesystems - How can we design filesystems to manage files on disk, and what
are the tradeoffs inherent in designing them? How can we interact with the
filesystem in our programs?

Why is answering this question important?
* Helps us understand what filesystems do (today and next time)

* Provides insight into the challenges and tradeoffs in designing large systems
(next few lectures)

* Shows us how we can directly manipulate files in our programs (next week)

assign1: implement layers of the Unix v6 filesystem to read a file from disk given its
path.

CS111 Topic 1: Filesystems

Filesystems Case studv: Unix Filesystem
introduction and Uy System calls and Crash recovery
: V6 Filesystem : :
design file descriptors
Lecture 1/ This lecture Lecture 5 Lectures 6-7
This lecture through lecture 4

assign1: implement portions of the Unix v6 filesystem!

Learning Goals

* Understand the key responsibilities and requirements of a filesystem
e Get practice identifying tradeoffs in different filesystem designs
* Explore the design of the Unix V6 filesystem

Plan For Today

* Filesystems Introduction

* Methods for Storing Files
* Contiguous Allocation
* Linked Files
* Windows FAT
* Multi-level indexes

* The Unix V6 Filesystem
* Inodes

Plan For Today

* Filesystems Introduction

10

Filesystems

A filesystem is the portion of the OS that manages the disk.

* A hard drive (or, more commonly these days, flash storage) is persistent
storage — it can store data between power-offs.

Memory (RAM) Disk
* Fast, but less space * Slower, but more space
» Byte-addressable: can quickly access * Sector-addressable: cannot read/write
any byte of data by address, but not just one byte of data — can only
individual bits by address read/write “sectors” of data at a time
* Not persistent: cannot store data * Persistent: stores data between

between power-offs power-offs

11

Filesystem Functionality

We want to read/write file on disk and have them persist even when the device
is off. This may include operations like:

* creating a new file on disk
* looking up the location of a file on disk

* Reading/editing all or part of an existing file from disk — e.g.,
sequential/random access

e creating folders on disk
e getting the contents of folders on disk

12

Hard Drives

Magnetic disks (hard drives) have been the
standard storage mechanism for files.

* Spinning, magnetically-coated platters

e Actuator arm positions heads, which can read
and write data on the magnetic surfaces

* Moving parts means risk of damage from
sudden movement, dust, etc.

Actuator Arm

Actuator

Platters

Head

13

Hard Drives

Hard drives have peculiar performance
characteristics that have a big impact on how

we build filesystems.
Actuator Arm

e Reading and writing requires seeking (moving
arm to position heads over desired track) and

waiting for desired location to pass
underneath. Want to minimize this time.

* We can only read data in chunks of sectors.
Example of virtualization; making one thing

look like another.

Actuator Head

14

sector O sector 1 sector 2 sector 3 sector 4 sector 5 sector 6

Hard Disks are Sector-Addressable

sector O sector 1 sector 2 sector 3 sector 4 sector 5 sector 6
bytes 0-511 bytes 512-1023 bytes 1024-1535 bytes 1536-2047 Dbytes 2048-2559 Dbytes 2560-3071 bytes 3072-3583

If we are the OS, the hard disk creators might provide this API (“application
programming interface”) — a set of public functions - to interface with the disk:

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

This is all we get! We (the OS) must build a filesystem by layering functions on
top of these to ultimately allow us to read, write, lookup, and modify entire files..

Filesystems

Functions for user programs to read/write files

Filesystem

readSector and writeSector

16

Filesystem Challenges

Problems addressed by modern file systems:

* Disk space management:
* Fast access to files (minimize seeks)
e Sharing space between users
e Efficient use of disk space

* Naming: how do users select files?
 Reliability: information must survive OS crashes and hardware failures.

* Protection: isolation between users, controlled sharing.

17

Flash Storage

Recently, flash storage (“SSD”) has become
more popular and commonplace, especially
with the growth in mobile devices.

* Much faster (100x faster access), but more
expensive (5-10x higher cost/bit than disk)

* No moving parts, so more reliable

* |ssues with wear-out; once a chunk of the
drive has been erased many times (~100k), it
no longer stores info reliably.

* Typically, still only support reading/writing in
units of sectors.

- ENONTY - CEECYEYNN o T w o aaaareet ;~: & ‘\: i LR
.E ' .i-hm?” ": RS

V-NAND SSD

S 980

_PCle 40NVMe M2
n. 1TB

https://www.samsung.com/us/computing/memory-

storage/solid-state-drives/980-pro-pcie-4-0-nvme-ssd-1tb-

mz-v8p1tOb-am/

18

Plan For Today

* Methods for Storing Files

19

Sectors and Blocks

A filesystem generally defines its own unit of data, a "block," that it reads/writes
at a time.

e "Sector" = hard disk storage unit

* "Block" = filesystem storage unit (1 or more sectors) - software abstraction

Pros of larger block size? Smaller block size?

* E.g. fewer transfer operations if larger, but smaller files may read in more data
than necessary

i
Example: the block ! !
size could be defined '
as two sectors

sector 0 sector 1 sector 2 sector 3 sector 4 sector 5 sector 6

Storing Files on Disk

Two types of data we will be working with:
1. file payload data - contents of files (e.g. text in documents, pixels in images)

2. file metadata - information about files (e.g. name, size)

Key insight: both must be stored on the hard disk. Otherwise, we will not have
it across power-offs! (E.g. without storing metadata we would lose all filenames
after shutdown). This means some blocks must store data other than payload

data.

21

Storing Files on Disk

Two types of data we will be working with:

1. file payload data - contents of files (e.g. text in documents, pixels in
images)

2. file metadata - information about files (e.g. name, size)

Key insight: both must be stored on the hard disk. Otherwise, we will not have
it across power-offs! (E.g. without storing metadata we would lose all filenames
after shutdown). This means some blocks must store data other than payload

data.

22

Contiguous Allocation

First key question: should we store files contiguously on disk? What would it
look like if we did?

* Called contiguous allocation — allocate a file in one contiguous group of blocks
* For each file, keep track of the number of its first sector and its length

* Keep a free list of unused areas of the disk
e Example: IBM OS/360
» Advantages/drawbacks?

sector O sector 1 sector 2 sector 3 sector 4 sector 5 sector 6

bytes 0-511 bytes 512-1023 bytes 1024-1535 bytes 1536-2047 bytes 2048-2559 bytes 2560-3071 bytes 3072-3583 53

Contiguous Allocation

First key question: should we store files contiguously on disk? What would it
look like if we did?

* Called contiguous allocation — allocate a file in one contiguous group of blocks

Advantages:

* simple
 can read sequentially or easily jump to any location in file (“random access”)
e all data in one place (few seeks)

sector O sector 1 sector 2 sector 3 sector 4 sector 5 sector 6

bytes 0-511 bytes 512-1023 bytes 1024-1535 bytes 1536-2047 bytes 2048-2559 bytes 2560-3071 bytes 3072-3583 54

Contiguous Allocation

First key question: should we store files contiguously on disk? What would it
look like if we did?

* Called contiguous allocation — allocate a file in one contiguous group of blocks

Disadvantages:

* harc
* harc

to grow files
to lay out files on disk — we may not be able to squeeze a new file in a

bloc

< of free space (fragmentation — occurs when we have space on disk, but

can’t use it to store files)

sector O sector 1 sector 2 sector 3 sector 4 sector 5 sector 6

bytes 0-511 bytes 512-1023 bytes 1024-1535 bytes 1536-2047 Dbytes 2048-2559 Dbytes 2560-3071 Dbytes 3072-3583 25

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

* Problem: we need to know what blocks are associated with what files

One idea: linked files — like a linked list
* Each block contains file data as well as the location of the next block

* For each file, keep track of the number of its first block
* Approximate examples: TOPS-10, Xerox Alto
* Advantages/drawbacks?

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

One idea: linked files — like a linked list
* Each block contains file data as well as the location of the next block

Advantages:

* Easy to grow files
* Easier to fit files in available space — less fragmentation

e Still supports simple sequential access

File 1

27

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

One idea: linked files — like a linked list
* Each block contains file data as well as the location of the next block

Disadvantages:

e Can’t easily jump to any arbitrary location in the file
e Data scattered throughout disk (more seeks)

_]

Linked Files

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

One idea: linked files — like a linked list
* Each block contains file data as well as the location of the next block

Disadvantages:

e Can’t easily jump to any arbitrary location in the file
e Data scattered throughout disk (more seeks)

_]

Windows FAT

First key question: should we store files
contiguously on disk? What would it look

like if we didn’t? File Allocation
Table
Interesting idea: what if we stored all the Y
links in one big table in memory? 1 File A:
* Windows (DOS) FAT: like linked allocation, 2| end
except links aren’t in blocks, they are in a 2 egd 6 4 3
“file allocation table” in memory and disk 5 ong File B:
* Still keep track of each file’s first block g f4 1 -
ree
* (Still used today for flash sticks, digital

cameras, many embedded devices)
» Advantages/Disadvantages?

30

Windows FAT

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t? File Allocation

] . .] Table
* Windows (DOS) FAT: like linked allocation, I
except links aren’t in blocks, they are in a 12 File A:
“file allocation table” in memory 2| end
Advantages: 2 egd 6 4 3
 Can more quickly jump to various 5| end File B:
locations in a file 6 I
. _ 7| free 1 2
* Still supports easy sequential access

31

Windows FAT

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t? File Allocation

Table

* Windows (DOS) FAT: like linked allocation, I

except Iinks. aren’t in t?locks, they arein a 12 File A:

“file allocation table” in memory 2| end
Disadvantages: 2 egd 6 4 3
* Data scattered throughout disk (more 5| end File B:

seeks 6L 4

.) _ 7| free 1 2

e Still need to jump through table to get to

an arbitrary location in the file

* Must store table in memory
32

File Payload Data

First key question: should we store files
contiguously on disk? What would it look
like if we didn’t? File Allocation

Table

* Windows (DOS) FAT: like linked allocation, I

except Iinks. aren’t in t?locks, they arein a 12 File A:

“file allocation table” in memory 2| end
Disadvantages: 2 egd 6 4 3
* Data scattered throughout disk (more 5| end File B:

seeks 6L 4

_) . 7| free 1 2

* Still need to jump through table to get to

an arbitrary location in the file

* Must store table in memory
33

File Payload Data

First key question: should we store files contiguously on disk? What would it
look like if we didn’t?

Interesting idea: what if we stored all the block numbers for a file? That way we
could quickly jump to any point in the file.

* Multi-level indexes: store all block numbers for a given file (but how?)
* Example: 4.3 BSD Unix, Unix V6 Filesystem (~1975)

_]

Plan For Today

* The Unix V6 Filesystem

35

Unix V6 Filesystem

Key Idea: files don’t need to be stored contiguously on disk, but we want to
store all the block numbers that make up the data for a file.

We need somewhere to store information about each file, such as which block

numbers store its payload data. Ideally, this data would be easy to look up as
needed.

36

An inode ("index node") is a grouping of data about a single file. It’s stored on
disk, but we can read it into memory when the file is open.

* Some other filesystems (e.g., contiguous allocation/linked files, but not FAT)
store file metadata in inodes, too

* For Unix v6, they store things like file size and an ordered list of block numbers
that store file payload data.

* The Unix v6 filesystem stores inodes on disk together in the inode table for
quick access.

37

Unix V6 Inodes

The Unix v6 filesystem stores inodes on disk together in the inode table for
quick access.

* inodes are stored in a reserved region starting at block 2 (block O is "boot
block"” containing hard drive info, block 1 is "superblock" containing filesystem
info). Typically, at most 10% of the drive stores metadata.

* Inodes are 32 bytes big, and 1 block = 1 sector = 512 bytes, so 16 inodes/block.
* Filesystem goes from filename to inode number ("inumber") to file data.

Inodes
| 1

T T —

0 1 2 3 1024 1025 1026 1027 1028 1029

| J | |

Filesystem metadata File contents

38

Unix V6 Inodes

We need inodes to be a fixed size, and not too large. So how should we store
the block numbers? How many should there be?

1. if variable number, there's no fixed inode size

2. if fixed number, this limits maximum file size

The inode design here has space for 8 block numbers, which are stored in
order. (i.e. first block number stores first chunk of file, etc.). But we will see
later how we can build on this to support very large files.

39

* Filesystems Introduction Lecture 2 takeaway:
* Methods for Storing Files Filesystems need to store

* Contiguous Allocation both file metadata and

* Linked Files load dat Th r

. Windows FAT pay Oad daala. ere are

. Multi-level indexes various ways to store
* The Unix V6 Filesystem payload data, each with

* Inodes different pros/cons. The Unix

V6 filesystem uses inodes to

Next time: more about the Unix v6 store file data, including
Filesystem

block numbers.

40

