CS111, Lecture 20

Implementing Locks and Condition Variables

[Q— «} This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
‘U I I laS kS re CO I I I I I I e n d ed Creative Commons Attribution 2.5 License. All rights reserved .
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

Announcements

 Assign5 released! Due Wed. 11/30 (we do not factor in Thanksgiving break as
time to work on the assignment — please enjoy the break!)

* YEAH Hours today 4:30-5:30PM in 160-123
* Midterm grades almost done
* Next week: section as usual, no lecture Fri.

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading, Part 2

Dispatching

and Scheduling

: . Locks and
e . . Schedullng and . Preemption . Condition
Preemption and Locks Variables

Lecture 16 Lecture 17 Lecture 18 Last Lecture Today

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

* Understand more about interrupts and when they should be enabled/disabled

» See how our understanding of thread dispatching/scheduling allows us to
implement locks

* Learn more about the design of condition variables

Plan For Today

* Recap: Preemption and Interrupts
* Implementing Locks
* Implementing Condition Variables

Plan For Today

* Recap: Preemption and Interrupts

Preemption and Interrupts

On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler.

When the timer handler finishes, interrupts are re-enabled.

// within timer implementation
intr _enable(false);

your _timer _handler();

intr _enable(true);

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

Enabling Interrupts

void other func() {
intr_enable(true);

while (true) {
cout << "Other thread here! Hello." << endl;

On assign5: when a program creates a thread and gives you the function that
thread should run, you will run that thread initially by enabling interrupts first

and then running their specified function.

10

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No —if a thread is paused, that means when it was running the timer handler
was called and it context switched to another thread. Therefore, when that
thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

11

On assign5, there are other places where interrupts can cause complications.

* E.g. we could be in the middle of adding to the ready queue, but then the
timer fires and we go to remove something from the ready queue!

* This sounds like a race condition problem we can solve with mutexes!....right?

* Not in this case — because we are the OS, and we implement mutexes! And
they rely on the thread dispatching code in this assighment.

* Therefore, the mechanism for avoiding race conditions is to enable/disable
interrupts when we don’t want to be interrupted (e.g. by timer).

* Interrupts are a global state — not per-thread.

* We’'re assuming a single-core machine, where disabling interrupts is sufficient
to guarantee no other thread will run.

12

Disabling/Enabling Interrupts

The assignment starter code provides the following:

void intr _enable(bool on);

There is also a provided variable type IntrGuard that is like a unique_lock but for
interrupts; it disables interrupts when created and restores them back to the

previous state when it is destroyed. This is the method we want to use where
possible.

13

Disabling/Enabling Interrupts

void importantFunc() {
intr_enable(false);

otherFunc();

intr_enable(true);

}

void otherFunc() {
intr_enable(false);

intr_enable(true);

Oops - interrupts are
re-enabled here,
since otherFunc re-
enabled them!

14

Disabling/Enabling Interrupts

void importantFunc() {
IntrGuard guard; IntrGuard saves the current

e interrupt state (enabled/disabled)
otherFunc(); when it’s created and turns
interrupts off. When it is deleted, it
} restores interrupts to the saved

void otherFunc() { state.

IntrGuard guard;
5 ’ Key idea: if interrupts are already

} o disabled when an IntrGuard is
created, it keeps them disabled.

15

Plan For Today

* Implementing Locks

16

Lock

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::1lock() {
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {
locked = 90;
} else {
unblockThread(q.remove()); // add to ready queue
}

18

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);

// block/switch to next
// ready thread
blockThread();

void Lock::unlock() {
if (qg.empty()) {
locked = 90;
} else {
// add to ready queue
unblockThread(q.remove());

¥

Can you think of an example race condition that
could occur if we do not disable interrupts here and
two threads lock a single mutex at the same time?

Respond with your thoughts on PollEv:
pollev.com/cs111 or text CS111 to 22333 once to

join.

19

" What is an example of a race condition if we don't disable

interrupts and two threads both lock the same mutex?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);

// block/switch to next
// ready thread
blockThread();

void Lock::unlock() {
if (qg.empty()) {
locked = 90;
} else {
// add to ready queue
unblockThread(q.remove());

.

Can you think of an example race condition that
could occur if we do not disable interrupts here and
two threads lock a single mutex at the same time?

Example: thread 1 is in the middle of getting
ownership, but then the timer fires, we switch to
thread 2, and it locks the mutex. Then thread 1
resumes and also gets the mutex.

// Instance variliables

int locked = 0; Possible scenario (2 threads):
ThreadQueue q; 1. Thread #1 locks mutex
void Lock::lock() { 2. Thread #2 locks mutex, adds
intr_enable(false); itself to the queue, enables
if (!locked) { interrupts
locked = 1; aht b hread #2 block
1 else { 3. Right before thread #2 blocks,
q.add(currentThread); thread #1 unlocks the mutex
intr_enable(true); // 22 and unblocks thread #2
) blockThread(); // block/swit 4. Thread #2 then proceeds to
} block.
5. Nobody unblocks thread #2 ®

22

Lock

// Instance variliables

int locked = ©; Instead, we must re-enable
ThreadQueue q; interrupts at the end of lock(). This
void Lock::lock() { means that once a thread unblocks
IntrGuard guard; to acquire the lock, it wakes up
if (!locked) { after blockThread() and re-enables
locked = 1; .
1 else { interrupts.

g.add(currentThread);
blockThread(); // block/switch to next ready thread

23

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (gq.empty()) {
locked = 9;
} else {
unblockThread(q.remove()); // add to ready queue
}

24

Lock

// Instance variliables

int locked = 0; Problem: what happens when we
ThreadQueue q; switch to the next ready thread?
void Lock::lock() { Interrupts will be disabled!

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

g.add(currentThread);
blockThread(); // block/switch to next ready thread

25

Lock

// Instance variliables

int locked = 0; Problem: what happens when we
ThreadQueue g; switch to the next ready thread?
void Lock::lock() { Interrupts will be disabled!
IntrGuard guard;
1f (iloikgdz i Key Idea: we know that every
} e15ce>c{e I possible way a thread resumes (e.g.
q.add(currentThread); timer), it will re-enable interrupts.
blockThread(); // block/switTherefore, this isn’t a problem.

26

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
}void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

27

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

28

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
) if (1locked) { if (1locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

29

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

30

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

> })

31

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

32

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { »void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

33

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; # IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

34

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (1locked) {) i (1locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

35

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); # g.add(currentThread);
blockThread(); blockThread();

} }

36

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); # blockThread();

} }

} }

37

£ Enabling/Disabling Interrupts

Thread #1 Thread #2 (blocked)
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

} }

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

38

£ Enabling/Disabling Interrupts

Thread #1
}void Lock: :unlock() {

IntrGuard guard;

if (q.empty()) {
locked = 9;

} else {
unblockThread(qg.remove());

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2 (blocked)
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

39

3 Enabling/Disabling Interrupts

Thread #1 Thread #2 (blocked)
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = 9; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

40

3 Enabling/Disabling Interrupts

Thread #1
void Lock: :unlock() {
IntrGuard guard;

if (qg.empty()) {

locked = 9;
} else {
unblockThread(q.remove());

¥
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

41

£ Enabling/Disabling Interrupts

Thread #1
void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = 9;
} else {
unblockThread(qg.remove());
}

> }

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

42

3 Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

» (assume thread 1 reenables
interrupts when resumed and
disables them when paused)

43

3 Enabling/Disabling Interrupts

Thread #1
void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = 9;
} else {
unblockThread(qg.remove());
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2

void Lock::lock() A
IntrGuard guard;
if (!locked) {

locked = 1;

} else {

-

q.add(currentThread);
blockThread();

44

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }

-}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

45

Plan For Today

* Implementing Condition Variables

46

Implementing Condition Variables

Now that we understand how thread dispatching/scheduling works, we can
write our own condition variable implementation! Condition variables need to
block threads (functionality the dispatcher / scheduler provides).

wait(mutex& m)
notify_one()
notify_all()

What does the design of a condition variable look like? What state does it
nheed?

47

1. Should atomically put the thread to sleep and unlock the specified lock

2. When that thread wakes up, it should reacquire the specified lock before
returning

48

notify_one and notify_all

notify_one

 Should wake up/unblock the first waiting thread (we are guaranteeing FIFO in
our implementation)

notify_all
» Should wake up/unblock all waiting threads

For both: if no-one waiting, does nothing.

49

Plan For Today

* Recap: Preemption and Interrupts Lecture 20 takeaway: | ocks
* Implementing Locks consist of a waiting queue
* Implementing Condition Variables and redispatching to make

threads sleep. Condition
variables also need to make
threads sleep until they are
notified.

Next time: introduction to virtual
memory

50

