CS111, Lecture 22

Dynamic Address Translation

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under

@ m a S kS re CO m m e n d e\d—) Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 1




Topic 4: Virtual Memory - How
can one set of memory be shared

among several processes? How
can the operating system manage

access to a limited amount of
system memory?



CS111 Topic 4: Virtual Memory

Demand Paging
and the Clock
Algorithm

Dynamic
Address
Translation

Virtual Memory
Introduction

» »

Lecture 21 Today Lecture 23 Lecture 24

Paging

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.



Learning Goals

* Understand the benefits of dynamic address translation

e Reason about the tradeoffs in different ways to implement dynamic address
translation



Plan For Today

* Recap: virtual memory and dynamic address translation
e Approach #1: Base and Bound
* Approach #2: Multiple Segments



Plan For Today

* Recap: virtual memory and dynamic address translation



Virtual memory is a
mechanism for multiple
processes to
simultaneously use system

memorty.




Sharing Memory

We want to allow multiple processes to simultaneously use system memory.

Our goals are:
* Multitasking — allow multiple processes to

* Transparency — no process should need to
must run regardless of the number and/or

be memory-resident at once

<now memory is shared. Each

ocations of processes in memory.

* Isolation — processes must not be able to corrupt each other
* Efficiency (both of CPU and memory) — shouldn’t be degraded badly by sharing



Load-Time Relocation

* When a process is loaded to run, place it in a
designated memory space.

* That memory space is for everything for that process —
stack/data/code

* Interesting fact — when a program is compiled, it is
compiled assuming its memory starts at address 0.
Therefore, we must update its addresses when we load
it to match its real starting address.

e Use first-fit or best-fit allocation to manage available
memory.

* Problems: isolation, deciding memory sizes in advance,
fragmentation, updating addresses when loading

Operating
System

Process 3

Process 6

Process 1




Idea: What if, instead of
translating addresses when
a program Is loaded, the OS
Intercepted every memory
reference and translated it?




Dynamic Address Translation

Let’s have the OS intercept every memory reference a process makes.

* The OS can prohibit processes from accessing certain addresses (e.g. OS
memory or another process’s memory)

* Gives the OS lots of flexibility in managing memory
* Every process can now think that it is located starting at address O
* The OS will translate each process’s address to the real one it’s mapped to

11



Dynamic Address Translation

We will add a memory management unit (MMU) in hardware that changes
addresses dynamically during every memory reference.

e Virtual address is what the program sees

* Physical address is the actual location in memory

Virtual address Physical address

data

12



Dynamic Address Translation

* Every process can think it starts at address 0 and is the only process in memory

* Behind the scenes, the OS can choose how it maps each process’s virtual
addresses to real (“physical”) addresses

* As a result, a process’s virtual address space may look very different from how
the memory is really laid out in the physical address space.

13



Dynamic Address Translation

Key Idea: there are now two views of memory, and they can look very different:
* Virtual address space is what the program sees
* Physical address space is the actual allocation of memory

(>9) (>9)

0 0
Virtual Address Space Physical Address Space 14



Key Question: How do the
MMU/OS translate from
virtual addresses to
physical ones?




Plan For Today

* Approach #1: Base and Bound
* Approach #2: Multiple Segments

* Approach #3: Paging

16



Plan For Today

* Approach #1: Base and Bound

17



Approach #1: Base and Bound

Key Idea: Let’s use the load-time relocation idea of contiguous allocation, but
with the MMU.

* Every process’s virtual address space is mapped to a contiguous region of
physical memory.

* When a program accesses a virtual address, translate it by adding the base for
that process — the physical address its memory really starts at.

* We specify the process’s memory size by setting a bound for it; if a process
accesses an an invalid virtual address above the bound, OS triggers an error.

18



Approach #1: Base and Bound

* “base” is physical address starting point — corresponds to virtual address O
* “bound” is highest allowable virtual memory address

 Each process has own base/bound. Stored in PCB and loaded into two
registers when running.

On each memory reference:

 Compare virtual address to bound, trap if >= (invalid memory reference)

e Otherwise, add base to virtual address to produce physical address

19



Approach #1: Base and Bound

Example: let’s say process A has base = 1000, bound = 5000. What happens if:
* |t accesses virtual address 60007
* |t accesses virtual address 07?

20



Approach #1: Base and Bound

Example: let’s say process A has base = 1000, bound = 5000. What happens if:
* It accesses virtual address 60007 Invalid memory reference.
* |t accesses virtual address 0? Accesses physical address 1000.

21



Process B has base =6000, bound =2000. What happens
when it accesses virtual addresses 1) 6000 and 2) 1000?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



W

| " Process B has base = 6000, bound =2000. What happens : |
hen it accesses virtual addresses 1) 6000 and 2) 1000?

Accesses 1) physical address 12000
and 2) physical address 7000

Accesses 1) physical address 0 and
2) physical address 3000

1) Invalid memory reference and 2)
physical address 7000

Gets memory errors for both
references

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Process B has base =6000, bound =2000. What happens
when it accesses virtual addresses 1) 6000 and 2) 1000?

Accesses 1) physical address 12000
and 2) physical address 7000

Accesses 1) physical address 0 and
2) physical address 3000

1) Invalid memory reference and 2)
physical address 7000 v/ 0%

Gets memory errors for both
references

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Approach #1: Base and Bound

* Key idea: each process appears to have a completely private memory whose
size is determined by the bound register.

* The only physical address is in the base register, controlled by the OS. Process
sees only virtual addresses!

* OS can update a process’s base/bound if needed! E.g. it could move physical
memory to a new location or increase bound.

25



Approach #1: Base and Bound

What are some benefits of this approach?
* Inexpensive translation — just doing addition
* Doesn’t require much additional space — just per-process base + bound

* The separation between virtual and physical addresses means we can move
the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?

* One contiguous region per program

* Fragmentation

* Growing can only happen upwards with the bound

* Doesn’t support read-only regions of memory within a process

26



Idea: what if we broke up
the virtual address space
Into segments and mapped
each segment
independently?




Plan For Today

* Approach #2: Multiple Segments

28



Approach #2: Multiple Segments

Key Idea: Each process is split among several variable-size areas of memory,
called segments.

* E.g. one segment for code, one segment for data/heap, one segment for stack.

* The OS maps each segment individually — each segment would have its own
base and bound, and these are stored in a segment map for that process

* We can also store a protection bit for each segment; whether the process is
allowed to write to it or not in addition to reading

* Now each segment can have its own permissions, grow/shrink independently,
be swapped to disk independently, be moved independently, and even be
shared between processes (e.g. shared code).

29



Approach #2: Multiple Segments

On each memory reference:
* Look up info for the segment that address is in

 Compare virtual address to that segment’s bound, trap if >= (invalid memory
reference)

* Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?

30



Approach #2: Multiple Segments

Problem: how do we know which segment a virtual address is in?

One Ildea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Another possibility: deduce from machine code instruction executing

31



Approach #2: Multiple Segments

What are some benefits of this approach?
* Flexibility — can manage each segment independently
* Can share segments between processes

e Can move segments to compact memory and eliminate fragmentation

What are some drawbacks of this approach?

 Variable-length segments result in memory fragmentation — can move, but
creates friction

e Typically small number of segments

* Encoding segment + offset rigidly divides virtual addresses (how many bits for

segment vs. how many for offset?)
32



Idea: what if we broke up
the virtual address space
not into variable-length
segments, but into fixed-
size chunks?




* Recap: virtual memory and dynamic Lecture 22 takeaway:

address translation Dynamic Address translation
* Approach #1: Base.and Bound means that the OS intercepts
* Approach #2: Multiple Segments and translates each memory

access. Initial approaches to
this include base+bound per
process, and then expanding
Next time: approach #3 - paging that to be base+bound per
variable-length segment.

34



