
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 23
Paging

😷 masks recommended

2

Announcements
• Mid-quarter grade updates posted prior to Thanksgiving Break
• assign5 due Wed. 11/30
• Midterm regrade requests due Thurs. 12/1 5PM
• assign6 released Wed 11/30, due Fri. 12/9 (no late days permitted)

3

Topic 4: Virtual Memory - How
can one set of memory be shared
among several processes? How
can the operating system manage
access to a limited amount of
system memory?

4

CS111 Topic 4: Virtual Memory

Virtual Memory
Introduction

Dynamic
Address

Translation
Paging

Demand Paging
and the Clock

Algorithm

Additional
Virtual Memory

Topics

Lecture 21 Lecture 22 Lecture 25

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Today Next time

5

Learning Goals
• Reason about the tradeoffs in different ways to implement dynamic address

translation
• Understand the paging mechanism to map virtual addresses to physical

addresses via fixed-size pages of memory.
• Learn about page maps and how they help translate virtual addresses to

physical addresses

6

Plan For Today
• Recap: dynamic address translation so far
• Approach #3: Paging
• Page Maps

7

Plan For Today
• Recap: dynamic address translation so far
• Approach #3: Paging
• Page Maps

8

Virtual memory is a
mechanism for multiple

processes to
simultaneously use system

memory.

9

Dynamic Address Translation
Dynamic address translation: translate addresses dynamically during every
memory reference.
• The OS intercepts every memory reference and handles it.
• The OS can stop processes from accessing prohibited addresses (e.g. OS

memory or another process’s memory)
• Behind the scenes, the OS can choose how it maps each process’s virtual

addresses to real (“physical”) addresses
• As a result, a process’s virtual address space may look very different from how

the memory is really laid out in the physical address space.
• Every process can think it starts at address 0 and is the only process in memory
• Hardware support – MMU – to do address translation quickly

10

Dynamic Address Translation
Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:
1. Base and bound
2. Multiple Segments
3. (Today) Paging

11

Approach #1: Base and Bound
Key Idea: every process’s virtual address space is mapped to a contiguous region
of physical memory, tracked via a base register and bound register.
• “base” is physical address starting point – corresponds to virtual address 0
• “bound” is one greater than highest allowable virtual memory address
• Each process has own base/bound. Stored in PCB and loaded into two

registers when running.
• Base/bound can be updated: e.g. new physical memory location, larger bound.

On each memory reference:
• Compare virtual address to bound, trap if >= (invalid memory reference)
• Otherwise, add base to virtual address to produce physical address

12

Approach #1: Base and Bound
What are some benefits of this approach?
• Inexpensive translation – just doing addition
• Doesn’t require much additional space – just per-process base + bound
• The separation between virtual and physical addresses means we can move

the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?
• One contiguous region per program
• Fragmentation
• Growing can only happen upwards with the bound
• Doesn’t support read-only regions of memory within a process

13

Approach #2: Multiple Segments
Key Idea: Each process is split among several variable-size areas of memory,
called segments, each mapped individually with their own base and bound.
• Process’s segment map stores info for each segment: base+bound plus a

protection bit that indicates whether it’s read/write or read-only.
• Flexibility: each segment can have its own permissions, grow/shrink

independently, be swapped to disk independently, be moved independently,
and even be shared between processes (e.g. shared code).

14

Approach #2: Multiple Segments
On each memory reference:
• Look up info for the segment that address is in (how?)
• Compare virtual address to that segment’s bound, trap if >= (invalid memory

reference)
• Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?

15

Approach #2: Multiple Segments
Problem: how do we know which segment a virtual address is in?
One Idea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Example: PDP-10 computer had design with 2 segments, and the most-
significant bit in addresses encoded which one was being referenced.

0x122 0x456

Virtual Address

Segment # Offset

16

Approach #2: Multiple Segments
What are some benefits of this approach?
• Flexibility – can manage each segment independently
• Can share segments between processes
• Can move segments to compact memory and eliminate fragmentation

What are some drawbacks of this approach?
• Variable-length segments result in memory fragmentation – can move, but

creates friction
• Typically small number of segments
• Encoding segment + offset rigidly divides virtual addresses (how many bits for

segment vs. how many for offset?)

17

Idea: what if we broke up
the virtual address space
not into variable-length

segments, but into fixed-
size chunks?

18

Plan For Today
• Recap: dynamic address translation so far
• Approach #3: Paging
• Page Maps

19

Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages
• The page number is a numerical ID for a page. We have virtual page numbers

and physical page numbers.
• A virtual address is comprised of the virtual page # and offset in that page.
• A physical address is comprised of the physical page # and offset in that page.
• Each process has a page map (“page table”) with an entry for each virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).

20

Paging

Pages

Process A Virtual
Address Space

Physical Address
Space

21

Plan For Today
• Recap: dynamic address translation so far
• Approach #3: Paging
• Page Maps

22

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # = index

23

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

24

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

For 4KB pages (4096 bytes), the offset can be 0-4095. Thus,
we can store the offset in 12 bits (the amount needed to
represent any number 0-4095). 12 bits = 3 hexadecimal digits.

25

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

26

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address Physical Address

Virtual page # Physical page #Offset Offset

0x3400

??? ???

???

27

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342

Physical Address

Virtual page # Physical page #Offset Offset

0x3400

???

???

28

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

29

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 0x2342400

30

Practice: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

??? ???

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 ???

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

31

32

Practice: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x1 0x456

Virtual Address

0x13241 0x456

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 0x13241456

33

Practice: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

unused (16 bits) Virtual page # (36 bits) Offset (12 bits)

x86-64 64-bit Virtual Address

Physical page # (40 bits) Offset (12 bits)

x86-64 52-bit Physical Address

x86-64 with 4KB pages has 36-bit virtual page numbers and 40-bit physical page numbers.

34

Paging
On each memory reference:
• Look up info for that virtual page in the page map
• If it’s a valid virtual page number, get the physical page number it maps to, and

combine it with the specified offset to produce the physical address.

Problem: what about invalid page numbers? I.e. how do we know/represent
which pages are valid or invalid?
Solution: have entries in the page map for all pages, including invalid ones. Add
an additional field marking whether it’s valid (“present”).

35

Page Map

Index Physical page # Writeable? Present?
… … … …
3 0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

36

Page Map

Index Physical page # Writeable? Present?
… … … …
3 0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

If there is a memory access in virtual pages 0 or 2 here, it
would trap due to an invalid memory reference.

37

Paging
How do we provide memory to a process?
• Keep a global free list of physical pages – grab the first one when we need one
• Update process page table for a virtual page to map to this physical page, and

mark present / set permission bit

In this way, we can represent a process’s segments (e.g. code, data) as a
collection of 1 or more pages, starting on any page boundary.

38

Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages
• Each process has a page map (“page table”) with an entry for every virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write) and whether it is present.
• The page map is stored in contiguous memory

Problem: how big is a single process’s page map? You said an entry for every
page?

39

Recap
• Recap: dynamic address translation

so far
• Approach #3: Paging
• Page Maps

Next time: more about paging, and
demand paging

Lecture 23 takeaway:
Paging is a design where we
chop physical and virtual
memory into fixed-size
pages. We map virtual pages
to physical ones and store
these mappings in a page
map for each process.

