CS111, Lecture 23
Paging

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

@ m a S kS re CO m m e n d e\d—) Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Announcements

* Mid-quarter grade updates posted prior to Thanksgiving Break
* assign5 due Wed. 11/30

* Midterm regrade requests due Thurs. 12/1 5PM
* assign6 released Wed 11/30, due Fri. 12/9 (no late days permitted)

Topic 4: Virtual Memory - How
can one set of memory be shared

among several processes? How
can the operating system manage

access to a limited amount of
system memory?

CS111 Topic 4: Virtual Memory

Dynamic Demand Paging Additional
Address . Paging . and the Clock

Translation Algorithm

Virtual Memory

Virtual Memory

Introduction .
Topics

Lecture 21 Lecture 22 Today Next time Lecture 25

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Learning Goals

e Reason about the tradeoffs in different ways to implement dynamic address
translation

e Understand the paging mechanism to map virtual addresses to physical
addresses via fixed-size pages of memory.

* Learn about page maps and how they help translate virtual addresses to
physical addresses

Plan For Today

* Recap: dynamic address translation so far
e Approach #3: Paging
* Page Maps

Plan For Today

* Recap: dynamic address translation so far

Virtual memory is a
mechanism for multiple
processes to
simultaneously use system

memorty.

Dynamic Address Translation

Dynamic address translation: translate addresses dynamically during every
memory reference.

* The OS intercepts every memory reference and handles it.

* The OS can stop processes from accessing prohibited addresses (e.g. OS
memory or another process’s memory)

* Behind the scenes, the OS can choose how it maps each process’s virtual
addresses to real (“physical”) addresses

* As a result, a process’s virtual address space may look very different from how
the memory is really laid out in the physical address space.

* Every process can think it starts at address 0 and is the only process in memory
* Hardware support — MMU —to do address translation quickly

Dynamic Address Translation

Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:

1. Base and bound
2. Multiple Segments
3. (Today) Paging

10

Approach #1: Base and Bound

Key Idea: every process’s virtual address space is mapped to a contiguous region
of physical memory, tracked via a base register and bound register.

* “base” is physical address starting point — corresponds to virtual address O

* “bound” is one greater than highest allowable virtual memory address

* Each process has own base/bound. Stored in PCB and loaded into two
registers when running.

* Base/bound can be updated: e.g. new physical memory location, larger bound.

On each memory reference:
 Compare virtual address to bound, trap if >= (invalid memory reference)
e Otherwise, add base to virtual address to produce physical address

11

Approach #1: Base and Bound

What are some benefits of this approach?
* Inexpensive translation — just doing addition
* Doesn’t require much additional space — just per-process base + bound

* The separation between virtual and physical addresses means we can move
the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?

* One contiguous region per program

* Fragmentation

* Growing can only happen upwards with the bound

* Doesn’t support read-only regions of memory within a process

12

Approach #2: Multiple Segments

Key Idea: Each process is split among several variable-size areas of memory,
called segments, each mapped individually with their own base and bound.

* Process’s segment map stores info for each segment: base+bound plus a
protection bit that indicates whether it’s read/write or read-only.

* Flexibility: each segment can have its own permissions, grow/shrink
independently, be swapped to disk independently, be moved independently,
and even be shared between processes (e.g. shared code).

13

Approach #2: Multiple Segments

On each memory reference:
* Look up info for the segment that address is in (how?)

 Compare virtual address to that segment’s bound, trap if >= (invalid memory
reference)

* Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?

14

Approach #2: Multiple Segments

Problem: how do we know which segment a virtual address is in?

One Idea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Segment # Offset
0x122 0x456

Virtual Address

Example: PDP-10 computer had design with 2 segments, and the most-
significant bit in addresses encoded which one was being referenced.

15

Approach #2: Multiple Segments

What are some benefits of this approach?
* Flexibility — can manage each segment independently
* Can share segments between processes

e Can move segments to compact memory and eliminate fragmentation

What are some drawbacks of this approach?

 Variable-length segments result in memory fragmentation — can move, but
creates friction

e Typically small number of segments

* Encoding segment + offset rigidly divides virtual addresses (how many bits for

segment vs. how many for offset?)
16

Idea: what if we broke up
the virtual address space
not into variable-length
segments, but into fixed-
size chunks?

Plan For Today

e Approach #3: Paging

18

Approach #3: Paging

Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).

* A “page” of virtual memory maps to a “page” of physical memory. No partial
pages

* The page number is a numerical ID for a page. We have virtual page numbers
and physical page numbers.

* A virtual address is comprised of the virtual page # and offset in that page.
* A physical address is comprised of the physical page # and offset in that page.

e Each process has a page map (“page table”) with an entry for each virtual
page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).

19

e,
.
.,
.,

.
.,
0
.,
0
e,
.

S
0
.,
0
e,
.,

Pages

.......
. e
.....

........

e,
.
f3

. .
wer .,
e g
.....
.......

e,
.
‘e
o,

.,

TN

e,
.
0
.
v
.

.
.,
0
.,
0
e,
.

Process A Virtual Physical Address
Address Space Space 20

Plan For Today

* Page Maps

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # = index

22

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
12 bits 12 bits
Virtual page # Offset ‘ Physical page # Offset

Virtual Address

Physical Address

23

Page Map

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1

For 4KB pages (4096 bytes), the offset can be 0-4095. Thus,
we can store the offset in 12 bits (the amount needed to

represent any number 0-4095). 12 bits = 3 hexadecimal digits.
12 bits 12 bits

Virtual page # Offset ‘ Physical page # Offset
Virtual Address Physical Address

24

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) ?2?2? 7??
Virtual Address Physical Address

0x3400 ?2?

25

Physical page #

Writeable?

3
2 0x12625 1
1 O0x13241 0)
0 O0x256 0)
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) ?2?2? 7??

Virtual Address
0x3400

Physical Address
22?

26

Physical page #

Writeable?

3
2 0x12625 1
1 O0x13241 0)
0 O0x256 0)
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 2??

Virtual Address
0x3400

Physical Address
??2?

27

Physical page #

Writeable?

3
2 0x12625 1
1 O0x13241 0)
0 O0x256 0)
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 0x400

Virtual Address
0x3400

Physical Address

28

Physical page #

Writeable?

3
2 0x12625 1
1 O0x13241 0)
0 O0x256 0)
Virtual page # Offset Physical page # Offset
0x3 0x400 | mmm) 0x2342 0x400

Virtual Address
0x3400

Physical Address
0x2342400

29

Practice: What is the physical address?

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.

Virtual page # Offset Physical page # Offset
??? ??? > ??? ???
Virtual Address Physical Address

0x1456 ?2? 30

" What physical address corresponds with virtual address :

0x1456 in this example?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Practice: What is the physical address?

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0
Virtual page # Offset Physical page # Offset
Ox1 0x456 |) 0x13241 0x456
Virtual Address Physical Address

0x1456 0x13241456 32

Practice: What is the physical address?

Index Physical page # Writeable?
3 0x2342 1
2 0x12625 1
1 0x13241 0)
0) Ox256 0)
unused (16 bits) Virtual page # (36 bits) Offset (12 bits) Physical page # (40 bits) Offset (12 bits)

x86-64 64-bit Virtual Address

x86-64 52-bit Physical Address

x86-64 with 4KB pages has 36-bit virtual page numbers and 40-bit physical page numbers. s

On each memory reference:
* Look up info for that virtual page in the page map

* If it’s a valid virtual page number, get the physical page number it maps to, and
combine it with the specified offset to produce the physical address.

Problem: what about invalid page numbers? l.e. how do we know/represent
which pages are valid or invalid?

Solution: have entries in the page map for all pages, including invalid ones. Add
an additional field marking whether it’s valid (“present”).

34

O N W

Physical page # Writeable? | Present?
0x2342 1 1
XXX X 0
0x13241 0 1
XXX X 0

35

Page Map

Index Physical page # Writeable? | Present?
3 0x2342 1 1
2
0

If there is a memory access in virtual pages 0 or 2 here, it
would trap due to an invalid memory reference.

36

How do we provide memory to a process?

* Keep a global free list of physical pages — grab the first one when we need one

e Update process page table for a virtual page to map to this physical page, and
mark present / set permission bit

In this way, we can represent a process’s segments (e.g. code, data) as a
collection of 1 or more pages, starting on any page boundary.

37

Approach #3: Paging

Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).

* A “page” of virtual memory maps to a “page” of physical memory. No partial
pages
* Each process has a page map (“page table”) with an entry for every virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write) and whether it is present.

* The page map is stored in contiguous memory

Problem: how big is a single process’s page map? You said an entry for every
page?

38

e Recap: dynamic address translation Lecture 23 takeaway:

so far | Paging is a design where we
* Approach #3: Paging chop physical and virtual
* Page Maps memory into fixed-size

pages. We map virtual pages
to physical ones and store
these mappings in a page

Next time: more about paging, and map for each process.
demand paging

39

