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Topic 4: Virtual Memory - How
can one set of memory be shared

among several processes? How
can the operating system manage

access to a limited amount of
system memory?
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assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.



Learning Goals

* Learn about page maps and how they help translate virtual addresses to
physical addresses

e Understand how paging allows us to swap memory contents to disk when we
need more physical pages.

e Learn about the benefits of demand paging in making memory look larger than
it really is



Plan For Today

* Recap: Paging so far
* Page Map Size
* Demand Paging



Plan For Today

* Recap: Paging so far



Approach #3: Paging

Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).

* A “page” of virtual memory maps to a “page” of physical memory. No partial
pages

* The page number is a numerical ID for a page. We have virtual page numbers
and physical page numbers.

e Each process has a page map (“page table”) with an entry for each virtual
page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).
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Each Process Has A Page Map
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Paging Summary

Each process has a page map (“page table”) with an entry for every virtual page,
mapping it to a physical page number and other info such as a protection bit
(read-only or read-write) and whether it is present.

* The page map is stored in contiguous memory

 All pages the same size — no more external fragmentation! (but some internal
fragmentation if not all of a page is used)

Problem: how big is a single process’s page map? You said an entry for every
page?
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Plan For Today

* Page Map Size
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Page Map Size

Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #ts? 23

236 virtual pages x 8 bytes per page entry = ???
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Page Map Size

Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s? 23°
236 virtual pages x 8 bytes per page entry = 512GB!! (23° bytes)

Plus, most processes are small, so most pages will be “not present”. And even
large processes use their address space sparsely (e.g. code at bottom, stack at
top).

We'll see how to mitigate this problem later.
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On assign6, you’ll implement your own virtual memory system using paging:

* You'll intercept memory requests
* You’'ll maintain a page map mapping virtual addresses to physical ones
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Plan For Today

* Demand Paging
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Demand Paging

Thought: if memory is in high demand, we could fill up all of memory. If a
process wants another page, we may not have any more. What do we do?

Idea #1: process just can’t have any more memory (not ideal)

Idea #2: let’s “borrow” a used physical page — we’ll store its existing contents on
disk, and then use the page for this new data. If the old contents are
referenced later, we’ll load them back into a physical page.

Overall goal: make physical memory look larger than it is.
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Demand Paging

* Locality — most programs spend most of their time using a small fraction of
their code and data

* Keep in memory the information that is being used, and keep unused
information on disk, moving info back and forth as needed.

* |deally: we have a memory system with the performance of main memory and
the cost/capacity of disk!
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Demand Paging

mij 0

Data Physical Address Space
0 Code Physical page # | WR? | PR?

0

Process A Virtual
Address Space

1. Pick an existing
physical page and swap
it to disk.

O r N W B~ U1 O

R |lR,P|O|OCO|[|OC|lOC|(O| K

R[N X ]| X ]| X ]| X | X
OO | X | X | X|X|X|krR

38




Demand Paging
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Demand Paging
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Demand Paging
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Demand Paging
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Demand Paging
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Page Faults

* If a program references an address that’s not present, it triggers a page fault

* If the page is in the disk swap space, the OS finds a free physical page, reads
the page in from disk to that physical page, updates the page map, and
resumes the program.

This can provide big benefits — but what potential scenario would lead demand
paging to slow the system way down?

Respond on PollEv: pollev.com/cs111
or text CS111 to 22333 once to join.
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What potential scenario would lead demand paging to slow

the system way down?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app



Thrashing

If the pages being actively used don’t all fit in memory, the system will spend all
its time reading and writing pages to/from disk and won’t get much work done.

 Called thrashing

* The page we kick to disk will be needed very soon, so we will bring it back and
kick another page, which will be needed very soon, etc....

* Progress of the program will make it look like access time of memory is as slow
as disk, rather than disks being as fast as memory. ®

* With personal computers, users can notice thrashing and kill some processes
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Page Replacement

If we need another physical page but all memory is used, which page should we
throw out? How do we pick?

 Random? (works surprisingly well!)
* FIFO? (throw out page that’s been in memory the longest) — fairness

* Would be nice if we could pick page whose next access is farthest in the future,
but we’'d need to predict the future...

* LRU (least-recently-used)? Replace page that was accessed the longest time
ago.
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* Recap: Paging so far Lecture 24 takeaway: We
* Page Map Size can make memory appear
* Demand Paging larger than it is by

swapping pages to disk
when we need more space,
and swapping them back
later.

Next time: how to choose which
pages to swap to disk (the clock
algorithm).

53



