CS111, Lecture 25
The Clock Algorithm

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

@ m a S kS re CO m m e n d e\d—) Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)




Announcements

* assign6 Released!
* assign6 YEAH hours TODAY 3:30-4:20PM in 160-315
* Almost done grading assign4!

* In the process of reviewing midterm regrade requests



Topic 4: Virtual Memory - How
can one set of memory be shared

among several processes? How
can the operating system manage

access to a limited amount of
system memory?



CS111 Topic 4: Virtual Memory

The Clock
Algorithm and
Virtual Memory
Wrap-Up

Dynamic
Address
Translation

Virtual Memory
Introduction

»

Lecture 21 Lecture 22 Lecture 23 Lecture 24 Today

Paging . Demand Paging

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.



Learning Goals

* Learn about tradeoffs in approaches for choosing pages to kick out of memory

* Walk through the implementation of the clock algorithm, one algorithm for
choosing which page to throw out



Plan For Today

* Recap: Demand Paging
* Page Replacement Policies
* The Clock Algorithm

 Virtual Memory summary



Plan For Today

* Recap: Demand Paging



Demand Paging

Thought: if memory is in high demand, we could fill up all of memory. If a
process wants another page, we may not have any more. What do we do?

Idea #1: process just can’t have any more memory (not ideal)

Idea #2: let’s “borrow” a used physical page — we’ll store its existing contents on
disk, and then use the page for this new data. If the old contents are
referenced later, we’ll load them back into a physical page.

Overall goal: make physical memory look larger than it is.



Demand Paging

If we need another page but memory is full:

1. Pick a page to kick out

2. Write it to disk

3. Mark the old page map entry as not present

4. Update the new page map entry to be present and map to this physical page



Demand Paging

If the program accesses a page that was swapped to disk:

1. Triggers a page fault (not-present page accessed)

We see disk swap contains data for this page

Get a new physical page (perhaps kicking out another one)
Load the data from disk into that page

A S

Update the page map with this new mapping

10



We don’t always need to write a swapped-out page to disk — e.g. read-only code
pages can always be loaded from executable. And we may have initial data for a
page that wasn’t previously swapped out.

There are three categories of pages for swapping to disk:
1. Read-only code pages: read from executable when needed

2. Initialized data pages: on first access, read from executable. Once loaded,
save to swap file since contents may have changed.

3. Uninitialized data pages: e.g. stack, heap — on first access, just clear memory
to all zeros. Save to swap file as needed.

11



We don’t always need to write a swapped-out page to disk — e.g. read-only code
pages can always be loaded from executable. And we may have initial data for a
page that wasn’t previously swapped out.

On assigne6:

* You'll only write to disk if a page is “dirty” (modified). Page maps contain a
dirty bit that is set whenever a page is modified.

* A page may have contents on disk from the executable or from a previous
swap — you’ll read into memory in both cases.

12



Page Fetching

When should we bring pages into memory?

* Most modern OSes start with no pages loaded, load pages when referenced
(“demand fetching”).

 Alternative: prefetching - try to predict when pages will be needed and load
them ahead of time (requires predicting the future...)

* One approach: could read many pages on a page fault instead of just 1

Which pages should we throw out of memory if we need more space?

13



Plan For Today

* Page Replacement Policies

14



Page Replacement

If we need another physical page but all memory is used, which page should we
throw out? How do we pick?

 Random? (works surprisingly well!)
* FIFO? (throw out page that’s been in memory the longest) — fairness

* Would be nice if we could pick page whose next access is farthest in the future,
but we’'d need to predict the future...

* LRU (least-recently-used)? Replace page that was accessed the longest time
ago.

15



Page Replacement

If we need another physical page but all memory is used, which page should we
throw out? How do we pick?

 Random? (works surprisingly well!)
* FIFO? (throw out page that’s been in memory the longest) — fairness

* Would be nice if we could pick page whose next access is farthest in the future,
but we’'d need to predict the future...

* LRU (least-recently-used)? Replace page that was accessed the longest time
ago.

16



Least-Recently-Used

How could we know which page was the least-recently used?
e Store clock time for each page on each reference?
* Scan all pages to find oldest one?

Alternative: just find an old page, not necessarily the oldest.
The clock algorithm is one implementation of this idea.

Clock algorithm key idea: rotate through pages until we find one that hasn’t
been referenced since the last time we checked it. (“second chance algorithm”)

17



Plan For Today

* The Clock Algorithm

18



Physical Pages

Clock Algorithm

Let’s say the program
requests mapping page 5,
but we have no more
physical pages. This triggers
the clock algorithm.

“reference” bit —j

Physical page #

WR?

PR?

R

E

1

1

1

D

1

1

1

X

The reference bit is
set to 1 whenever
that page is read or
written.

Page Map

19



Physical Pages

Clock Algorithm

Was this page accessed
4 recently (reference = 1)?
If so, set reference =0 and
continue.

“We'll leave this page
for now — but if we
come back and it’s
still unused, we’ll kick
it out.”

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 1
B 0 1 1
A 0 1 1
Page Map

20



Physical Pages

Clock Algorithm

Was this page accessed
4 recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 1
B 0 1 1
A 0 1 0
Page Map

21



Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 1
B 0 1 0
A 0 1 0
Page Map

22



Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 1
D 1 1 1
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 1 0
Page Map

23



Physical Pages

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 1
D 1 1 0
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 1 0
Page Map

24



Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 1 0
Page Map

25



Physical Pages

Clock Algorithm

Was this page accessed
4 recently (reference = 1)?
If not, this is the one we

should remove.

“This page hasn’t
been used since the
last time | checked —
let’s remove it.”

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
X X 0 X
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 1 0
Page Map

26



Physical Pages

—

Clock Algorithm

Now the clock algorithm

stops, and we remember

the position of the hand
for next time it runs.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
A 1 1 1
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 0 0
Page Map

27



Physical Pages

G

Clock Algorithm

Let’s say the program now
requests mapping page 4.
Some memory accesses
have also happened.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
A 1 1 1
X X 0 X
X X 0 X
C 1 1 1
B 0 1 1
A 0 0 0
Page Map

28



Physical Pages

G

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
A 1 1 1
X X 0 X
X X 0 X
C 1 1 1
B 0 1 0
A 0 0 0
Page Map

29



Physical Pages

Clock Algorithm

Was this page accessed
recently (reference = 1)?
If so, set reference =0 and
continue.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
A 1 1 1
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 0 0
Page Map

30



Physical Pages

Clock Algorithm

Was this page accessed

recently (reference = 1)?

If not, this is the one we
should remove.

“reference” bit —w

“This page hasn’t
oeen used since the
ast time | checked —
et’s remove it.”

Physical page # WR? | PR? R
E 1 1 0
D 1 1 0
A 1 1 1
X X 0 X
X X 0 X
C 1 1 0
B 0 1 0
A 0 0 0
Page Map

31



Physical Pages

—

Clock Algorithm

Now the clock algorithm

stops, and we remember

the position of the hand
for next time it runs.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 0
D 1 0 0
A 1 1 1
D 1 1 1
X X 0 X
C 1 1 0
B 0 1 0
A 0 0 0
Page Map

32



Clock Algorithm

 We add a reference bit: set whenever a page is read or written

* When physical memory is full and we need to choose a page to remove, run
the clock algorithm.

* Clock hand “sweeps” over pages, rotating back to start if reaching the end.

* Every time the hand visits a page, we ask: “Has this page been referenced since
the last time the clock hand swept over it?”

* If YES (reference = 1): mark it as not referenced, and advance clock hand
* If NO (reference = 0): choose it for removal, advance clock hand, stop clock algorithm

* The clock hand position is saved for the next time the algorithm runs
e “Second chance” algorithm

33



Physical Pages

G

Clock Algorithm

Some time has passed,
pages were referenced,
and we now need a new
page. Which page will the
clock algorithm choose to
reuse this time?

Respond on
PollEv:
pollev.com/cs111 or

text CS111 to 22333
once to join.

“reference” bit —w

Physical page # WR? | PR? R
E 1 1 1
D 1 0 0
A 1 1 1
D 1 1 1
X X 0 X
C 1 1 0
B 0 1 1
A 0 0 0
Page Map

34



Page A
Page B
Page C
Page D

Page E

& When poll is active, respond at pollev.com/cs111

3 Text CS111 to 22333 once to join

Which page will be reused next?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app




Page Replacement

How does page replacement work if there are multiple processes running?

* Per-process replacement: each process has separate pool of physical pages,
and a page fault in a process can only replace one of its own pages. But how
many physical pages should each process get?

* Global replacement (most common): all pages from all processes in single
replacement pool. A page fault in one process can kick out a page in another
process.

37



Plan For Today

* Virtual Memory summary

42



Virtual Memory

 Virtual memory is an example of “OS magic” — very powerful mechanism

* Virtualization: making one thing look like another — separation between

appearance and reality

* OS can manage physical memory how it wants (e.g. swap to disk), invisible to

user programs
Goals:

* Multitasking — allow multiple processes to

* Transparency — no process should need to
must run regardless of the number and/or

be memory-resident at once

<now memory is shared. Each

ocations of processes in memory.

* Isolation — processes must not be able to corrupt each other

* Efficiency (both of CPU and memory) — shouldn’t be degraded badly by sharing

43



CS111 Topic 4: Virtual Memory

Virtual Memory - How can one set of memory be shared among several

processes? How can the operating system manage access to a limited amount of
system memory?

Why is answering this question important?

* We can understand one of the most “magical” responsibilities of OSes —
making one set of memory appear as several!

e Exposes challenges of allowing multiple processes share memory while
remaining isolated

* Allows us to understand exactly what happens when a program accesses a
memory address

assign6: implement paging/demand paging system to translate addresses and
load/store memory contents for programs as needed.

44




* Recap: Demand Paging Lecture 25 takeaway: There
* Page Replacement Policies are many different policies
* The Clock Algorithm to choose a page to kick

* Virtual Memory summary out when memory is full.

The clock algorithm is one
approximation of LRU to
pick an old page to remove.

45



