CS111, Lecture 26

Virtual Machines and Networking

— This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
& :> Creative Commons Attribution 2.5 License. All rights reserved.
N 4

- m a S kS re CO m m e n d e\d—) Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)




Extra Topic 1- How can we virtualize
the entire computer hardware so that we
can run entire other OSes?

Extra Topic 2- How can we write
programs that communicate over a
network with other programs?



Learning Goals

 Learn about virtual machines and how they build on our understanding of
virtualization to virtualize the entire hardware

e Understand the fundamentals of networking and how machines can
communicate



Plan For Today

* Topic 1: Virtual Machines
* The Hypervisor

* Topic 2: Networking

* Client-server

* Networking system calls
* Demo: Time Client



Plan For Today

* Topic 1: Virtual Machines



Extra Topic 1- How can we
virtualize the entire computer
hardware so that we can run entire
other OSes?



Virtual Machines

* A Virtual Machine is an abstraction of the entire computer hardware —
software enables us to run multiple OSes simultaneously, each thinking it has
its own machine!

e Virtual Machines even let us run an OS within an OS!

* A powerful application of the idea of virtualization — make one thing look like
something else, or many of them.

* Powerful use cases, enabling new features and functionality

* Demo: VMware Fusion



Virtual Machines

Why are Virtual Machines useful?

 Software development — test software on different OSes / versions on a single
machine

* Datacenters — rather than one application per machine (for isolation), we can
have one VM per application and run several per machine.

* Snapshots — we can save / continue / restore VM state!
* E.g.in a datacenter, migrate VMs between machines to balance load.

* E.g. in software development, run tests with same saved VM configuration —
reproducible tests

* Heavily used in cloud computing (e.g. Amazon Web Services, Google Cloud)
* Variations of this idea — called containers (e.g. Docker), like lightweight VMs
* How do these work?



Virtual Machines

Key idea — we need a more powerful version of a “process” that can run an
entire OS.

Regular processes can’t do privileged OS tasks nor access all hardware
functionality that an OS needs; it’s running in user mode!



Process Abstraction

Physical
Instruction Memory
. |/O Devices
Set Registers MMU /
~
Virtual Memory
>Operating
System
System
Calls

> Hardware

10



Process Abstraction

Physical
Instrdction Memory
\ |/O Devices
Set Registers MMU /
N
Virtual Memory
>Operating
System
System
Calls

> Hardware

11



Process Abstraction

Instruction
Set

Registers

Physical
Memory

|/O Devices

Virtual Memory

System
Calls

System

>Operating

> Hardware

Virtual
Machine

12



Plan For Today

* The Hypervisor

13



Virtual Machines

A hypervisor is the software that enables this - interface for OSes to run.
e Can run just hypervisor on machine, and then 1 or more OSes on top of it
e Can run hypervisor on top of OS, running an OS within an OS

14



Hypervisor

* One possible approach — simulate everything in software (even instruction
execution). But too slow....

* We want to give the virtual machine access to the real hardware as much as
possible to improve performance.

* ldea: if the OS does something that a normal process can do, just do as normal
on real hardware. For other things, have hypervisor step in and simulate.

15



Privileged Instructions

Example #1: what if the guest OS executes an instruction only OSes can run?

* Since virtual machine runs in user mode, these cause “illegal instruction” traps
into hypervisor

* Hypervisor catches these traps, simulates appropriate behavior

16



System Calls

Example #2: what if a program running in the guest OS makes a system call?
* By default, goes to host OS, not guest OS!

* Hypervisor traps, analyzes trapping instruction, simulates system call back to
guest OS

17



System Calls

-~ N

User Process syscall

user

kernel

Guest OS '
\ /

user

kernel

<

Hypervisor

18



I/0 Devices

Example #3: what if the guest OS interacts with /O devices?

* Hypervisor configures guest OS devices such that it can intercept
communication

* Hypervisor can then handle it — e.g. when actual I/O operation completes,
hypervisor simulates interrupt into the guest OS

* This can be slow — one solution is to provide hypervisor-specific functions that
the guest OS can call (breaks abstraction!) for devices

19



Virtual Memory

What about memory access and management?

* The hypervisor gives guest OSes memory like processes get memory — virtual
addresses mapped to physical addresses behind the scenes.

* Mind-bending: the guest OS uses this virtual address space as its physical
memory, and it parcels that out to virtual address spaces in its own processes!

20



Virtualizing Virtual Memory

Guest Guest Host

Virtual AS “Physical” AS “Machine” AS
Guest MMU Machine MMU

(Virtual)

Guest Page Machine Page

Maps Maps

\ J \ J
Y Y

Virtual Machine Hardware 21




Virtualizing Virtual Memory

* Three levels of memory!
* Implementation today — extended page maps (Intel support in recent years)

22



Virtual Machines

* A powerful application of the idea of virtualization — make one thing look like
something else, or many of them.

* Powerful use cases, enabling new features and functionality

23



Plan For Today

* Topic 2: Networking

24



Extra Topic 2- How can we write

programs that communicate over a
network with other programs?



* We have learned how to write programs that can communicate with other
programs via mechanisms like pipes.

* However, the communicating programs must both be running on the same
machine.

* Networking allows us to write code to send and receive data to/from a
program running on another machine.

* Many new questions, such as:
* how does the data get there?
» what functions do we use to send/receive data? (new system calls!)

26



Networking and CS144

Take CS144 if you're interested in learning more about how networks work —
how data gets from one place to another. Questions addressed include:

* How is data packaged up to be sent over the network? (packets)
* How does my data make it to the destination in one piece? (packet loss, TCP)
* How do packets get routed across the network from one machine to another?

(diagram from CS144 slides) 27



Networking and CS142

Take CS142 if you're interested in learning more about how to write web-based
programs that leverage networking functionality.

28



Plan For Today

e Client-server

29



Networking Patterns

Most networked programs rely on a pattern called the "client-server model”
* This refers to two program "roles": clients and servers

* clients send requests to servers, who respond to those requests
e e.g. YouTube app (client) sends requests to the YouTube servers for what content to
display
* e.g. Web browser (client) sends requests to the server at a URL for what content to
display
* A server continually listens for incoming requests and sends responses back
("running a phone call center")

* A client sends a request to a server and does something with the response
("making a call")

30



Client-Server Model

google.com, please!
— E

— m
Sure, here’s the content for that page.

31



Client-Server Model

google.com, please!
— E

] o ito
About  Store Gmail Images ::5 m
Q

— m
+ » | Sure, here’s the content for that page.

32



Plan For Today

* Networking system calls

33



Networking System Calls

If we're a client program, how do we communicate with a server?

* Linux uses the same descriptor abstraction for network connections as it does
for files!

* You can open a connection to a program on another machine and you’ll get
back a socket descriptor number (using your file descriptor table)

* A socket is an endpoint of a single connection. Itis represented as a descriptor
we can read from/write to, and we close it when we’re done.

* Like a pipe, but with only one descriptor, not two.
* Key idea: networking is remote function call and return

34



Networking System Calls

How do you specify who you want to talk to?
* |P address — the address of the machine you want to connect to

* Port number —the program on that machine you want to connect to
* Every listening program (e.g. server program) on a machine has a unique port number
* Like “virtual process IDs”

* A server program will run on a machine and be assigned a port number (there
are established port numbers for some common types of programs, e.g. HTTP
(internet traffic) is always port 80)

* A client program wishing to connect to that server must communicate with
that port number at that IP address.

* We commonly map names to IP addresses (e.g. www.google.com) to make it
easier to specify who we want to connect to.

35


http://www.google.com/

Plan For Today

e Demo: Time Client

36



Demo: Client Program

Let’s write our first program that sends a request to a server!

 Example: | am running a server on myth64.stanford.edu, port 12345 that can
tell you the current time. Whenever you connect to it, it will send back the

current time as text.
* Let’s write a client program that connects and prints out what the server says.
* Demo: time-client-descriptor.cc

Helper function to connect to a server (implemented via system calls:

// Opens a connection to a server
int createClientSocket(const string& host, unsigned short port);

37



Key Idea: there is no code in the client that is itself calculating the current time.
All that logic is in the server that the client connects to! Essentially “remote
function call and return”.

How do servers work?
e Constantly running, listening for incoming requests
* Use system calls to listen for requests and respond to them

* Multithreading is a powerful tool for helping servers respond to many
incoming requests in parallel!

38



* Topic 1: Virtual Machines Lecture 26 takeaway:

* The Hypervisor Virtual machines are an

* Topic 2: Networking abstraction of the entire

e Client-server machine that lets us run

 Networking system calls multiple OSes. Networking

* Demo: Time Client allows programs on
separate machines to
communicate.

Next time: wrap-up / life after CS111

39



