CS111, Lecture 27
Wrap-Up / What’s Next?

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

&3
E\;,v')l m a S kS re CO m m e n d ed Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Plan For Today

* Recap: Where We’ve Been
* Big Ideas

* What’s Next?

* Q&A

Plan For Today

* Recap: Where We’ve Been

We've covered a /otfin just
10 weeks! Let’'s take a look

back.

Our CS111 Journey

Scheduling / Virtual
Filesystems Multiprocessing Dispatching Memory
Crash Multithreading Implementing
Recovery Locks /
Condition
Variables

Course Overview

Filesystems - How can we design filesystems to manage files on disk, and
what are the tradeoffs inherent in designing them? How can we interact
with the filesystem in our programs?

Multiprocessing - How can our program create and interact with other
programs? How does the operating system manage processes?

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

. Virtual Memory - How can one set of memory be shared among several
processes? How can the operating system manage access to a limited
amount of system memory?

. Additional Topics: Virtual Machines and Networking

First Day: What is an Operating System?

The operating system sits between the hardware and user programs. It
manages shared resources and provides functionality for programs to run.

It manages things like:
* Processor (CPU): decides what program gets to do work and for how long

* Memory (RAM): decides what programs get to use what areas of memory
* Hard Drive: decides how the disk is used to store files

User Programs

Operating System

Hardware (memory, hard drive, processor, etc.)

First Day: What is CS111?

In CS111 we are going to explore both “sides” of operating systems:

 We'll learn what functionality is exported by operating systems to make the
programs that we write more powerful.

 We'll learn how the operating system provides that functionality and how it
acts as an interface to the computer hardware.

User Programs

Operating System

Hardware (memory, hard drive, processor, etc.)

First Day: Course Overview

Why is it useful to know about operating systems?

* Understanding computing at this level demystifies how these seemingly-
complex systems work and can aid future projects you work on.

* OSes contain many examples of elegant ideas in computing (concurrency,
virtualization) that apply well beyond OSes, and pull together ideas like data
structures, algorithms, languages, etc.

* We can learn how we can maximally take advantage of the hardware and
operating system software available to us in our programs.

* Operating Systems are constantly evolving and encountering new applications
(e.g., large datacenters) and new challenges

Filesystems

Key Question: How can we design filesystems to manage files on disk, and what
are the tradeoffs inherent in designing them? How can we interact with the
filesystem in our programs?

{ Data biocx_|
. . o {_Data block | e

* Various design approaches such as B m//’_wm

contiguous allocation, linked files, FAT, e o M%W[

and multi-level indexes, each with I ==

1 1 / Diroct block fm

tradeoffs around fragmentation, file o e plomsa]

access, and amount of metadata °3 j'""'”““\,mm /
* Crash recovery adds additional questions sz o
* We can use file descriptors to read/write Unix Filesystem Inode Design [source]

files in our own programs.

10

https://people.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html

AESHE NS

Why does this matter?
* Great example of the challenges and tradeoffs in designing large systems

* Shows us how we can directly manipulate files in our programs and what really
happens when we open a file.

* Glimpse at hardware challenges/limitations — hard drives vs. flash storage

11

Multiprocessing

Key Question: How can our program create and interact with other programs?
How does the operating system manage processes?

* We can use fork/waitpid/execvp/pipe to
spawn, coordinate, and run other programs in >
another process.

* The OS has a Process Control Block for each
process and could run processes in any order!

12

Multiprocessing

Why does this matter?

* First look at concurrency challenges — we don’t know the order in which
processes will execute, and this can impact our code.

e Shows us how shells work!

000/ — x\

¢ » ¢]:

a.com

Renderer Proces

» iframe b.com

Renderer Proces

» iframe c.com

Chrome Site Isolation [source]

13

https://developers.google.com/web/updates/2018/09/inside-browser-part1

Multithreading

Key Question: How can we have concurrency within a single process? How does
the operating system support this?

* We can spawn threads to have concurrency
in a single process, but this presents many
challenges with synchronization, race
conditions and deadlock.

e The OS tracks and schedules threads (not
processes) to run, and switches between
them periodically.

* There are various designs for deciding which
thread to run next (round robin, SRPT, etc.)

https://commons.wikimedia.org/wiki/File:An_ill
ustration_of_the_dining_philosophers_problem.p

ne 14

Multithreading

Why does this matter?

* Multithreading can allow us to maximally take advantage of hardware
(multicore processors)

* Multithreading has many applications in modern software (e.g. app
background download thread, parallelizing spreadsheet recalculation, web
server parallelization)

* Helps us understand the behavior of our computers — how even single-core
machines can appear to multitask

* Deeper dive into concurrency challenges both in user programs and the OS —
synchronization is hard! Use only where necessary, and techniques like
monitor pattern can help.

15

Managing Concurrency

* Processes and threads
 Creating, dispatching

* Synchronization: races, inconsistency, locks, condition variables, monitors,
implementations of locks / condition variables

* Scheduling
* Interrupts
* Deadlock

16

Virtual Memory

Key Question: How can one set of memory be shared among several processes?
How can the operating system manage access to a limited amount of system

memory?

* Virtual memory gives each process its
own isolated virtual address space,
and the OS maps what’s needed to
real physical memory.

* The OS can manage physical memory
however it wants, including swapping
pages to disk if it needs to.

o0

Virtual

(o 0)

Physicq7l

Virtual Memory

Why does this matter?

e Powerful example of virtualization — virtual memory creates a world (virtual
address space) that doesn’t really exist!

* We write our own programs assuming tons of contiguous memory — now we
know how this is really enabled.

* Helps us understand the behavior of our computers — thrashing, swap, etc.

18

Plan For Today

* Big Ideas

Big Ideas

* Interplay between technology and OSes: OS at hardware-software boundary

* Designing with tradeoffs: not always one “best” way — evaluating pros/cons along
with priorities

* Virtualization: make one thing look like something else, or many of them
* Managing concurrency: synchronization is hard!
 Locality: the past often predicts the future (scheduling, paging, block cache, etc.)

* Atomic operations: take a collection of operations and make them appear as a single
indivisible operation (synchronization, file system consistency)

* Layering: building higher-level abstractions to hide details (e.g. monitors, file system
layers, file descriptors, etc.)

» System builders wrangle complexity — solve complex problems with simple

interfaces that others can build on (e.g. virtual memory, filesystems)
20

Plan For Today

e What’s Next?

21

After CS111, you are
prepared to take a variety
of classes in various areas.

What are some options?

Next Steps in Similar Areas

e CS143 (compilers) — how is a compiler implemented?
* Model program as a tree
* Go from code -> assembly

e CS144 (networking) — how can applications communicate over a network?
* How can we transmit data across an unreliable network?
 How does data get to its intended destination?

* CS145 (databases) — design and use of databases (including transactions,
logging)

* CS149 (parallel computing) — further explore concurrency / challenges in
writing parallel software

» CS155 (security) — how can we find/fix vulnerabilities and improve security?

23

Key question: how is an operating system implemented?

* Write parts of a real operating system called Pintos — real code in the OS!

* 4 significant projects, done in groups:
1. Threads
2. User programs (e.g. system calls)
3. Virtual memory
4. Filesystems

* Projects are challenging, but very rewarding
e CS112 is just the “assignments” part of CS140/CS212

24

Other Courses

* CS240 (requires CS112) — Advanced Topics in OSes (old/new papers on OS
developments)

e CS244B (requires CS144) — Distributed Systems
e CS190 (requires CS112) — Software Design

25

Other Courses

e CS152: Trust and Safety Engineering

* C$166: Data Structures

e CS181: Computers, Ethics, and Public Policy

e CS182: Ethics, Public Policy, and Technological Change
e CS221.: Artificial Intelligence

* CS246: Mining Massive Datasets

 EE108: Digital Systems Design

* EE180: Digital Systems Architecture

26

Plan For Today

* Q&A

Thank you!

Course Evaluations

We hope you can take the time to fill out the end-quarter course evaluation
once it’s available. We sincerely appreciate any feedback you have about the

course and read every piece of feedback we receive. We are always looking for
ways to improve!

Thank you!

29

