CS111], Lecture 5

File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2" Edition): Sections 13.1-13.2

é: :% m aS kS re u i red This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
h Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

How is assignl going for you so far?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

How is assignl going for you so far?

Great!

Good

Ok

Not so great

Going to start soon! :)

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

Announcements

 Sections start in person tomorrow! Check the course website for your section
assignment and location.

* assignl YEAH hours recording / slides posted to course website — thanks to
everyone who came out!

* Adding helper hours Fri. 2-4PM (at Nick’s office, Durand building room 331A)

Topic 1: Filesystems - How can
we design filesystems to manage files

on disk, and what are the tradeoffs
inherent in designing them? How

can we interact with the filesystem in
our programs?

CS111 Topic 1: Filesystems

Filesystem
System calls and
file descriptors

Filesystems
introduction and
design

Case study: Unix

Crash recovery

V6 Filesystem

Lecture 1/ Lectures 2-4 This lecture Lectures 6-7
lecture 2

Learning Goals

* Learn about the open, close, read and write functions that let us interact with
files

e Get familiar writing programs that read, write and create files

e Learn what the operating system manages for us so that we can interact with
files

Plan For Today

* Recap: filesystem design and modern filesystems
* Interacting with the filesystem as users

* Interacting with the filesystem as programmers
System calls

open() and close()

read() and write()

Practice: copying files

cp -r /afs/ir/class/cslll/lecture-code/lect5 . 8

Plan For Today

* Recap: filesystem design and modern filesystems

cp -r /afs/ir/class/cslll/lecture-code/lect5 . 9

Multi-level Indexes

The Unix V6 filesystem (from 1975) is an example of the “multi-level index”
filesystem design. There are many alternative designs that could be used —
some alterations you could propose might be:

e What if the block size was different?

e What if inodes stored a different number of block numbers?

* What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
* 4KB block size
* Inodes store 14 block numbers

* First 12 block numbers always direct, 13t" always singly indirect, 14t always
doubly indirect (no small vs. large schemes)

10

Other Filesystem Design Ideas

Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes

* Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
* The last block in a file can be a fragment (0-7 fragments)

* One large block can hold fragments from multiple files

* Get the time efficiency benefit of larger blocks, but the internal fragmentation
benefit of smaller blocks (small files can use fragments)

11

Filesystem Techniques Today

* Filesystem design is a hard problem! Tradeoffs, challenges with large and small
files.

e Even larger block sizes (16KB large blocks, 2KB fragments) — disk space cheap,
internal fragmentation doesn’t matter as much

* Reallocate files as blocks grow — initially allocate blocks one at a time, but
when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters

e ext4 is a popular current Linux filesystem — you may notice similarities!
* NTFS (replacement for FAT) is the current Windows filesystem
* APFS (“Apple Filesystem”) is the filesystem for Apple devices

12

https://opensource.com/article/17/5/introduction-ext4-filesystem

Plan For Today

* Interacting with the filesystem as users

cp -r /afs/ir/class/cslll/lecture-code/lect5 . 13

Filesystem: User Perspective

 Studying how we interact with the filesystem as users will inform how we
interact with it as programmers.

* As users, we can run Is to get details about particular files. Using -a shows all
files (even hidden ones), - shows more info about each file

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

14

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

filename

15

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Last modified time

16

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

size in bytes

17

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Group name

18

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..

-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c

-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h

-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests

-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c

-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h

-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h

-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c
Owner name

19

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

hard links

20

Filesystem Information

troccoli@myth60:~/assignl$ 1ls -al

total 60

drwx------ 5 troccoli operator 4096 Oct 4 22:42 .

drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-PW------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-PW------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-PW------- 1 troccoli operator 839 Sep 30 14:32 custom tests
-PW------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-PW------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-PW------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-PW------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Type and perwmissions

21

Unix File Permissions

rnX r-xXx r-X

owner group other

Here, the owner has read, write, and execute permissions,
the group has only read and execute permissions, and the
user also has only read and execute permissions.

22

File Permissions

rw- r-- pr--

owner group other

We can represent permissions in binary (1 or O for each permission option):
e eg. for permissions above: 110 100 100
 we can further convert each group of 3 into one base-8 digit

base 8 (“octal”): 6 4 4

* So, the permissions for the above file would be 644 23

Plan For Today

* Interacting with the filesystem as programmers

cp -r /afs/ir/class/cslll/lecture-code/lect5 . 24

System Calls

Functions to interact with the operating system are part of a group of functions
called system calls.

* A system call is a public function provided by the operating system.

* The operating system handles these tasks because they require special
privileges that we do not have in our programs.

* The operating system kernel actually runs the code for a system call,
completely isolating the system-level interaction from your (potentially

harmful) program.

* We are going to examine the system calls for interacting with files. When
writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

25

Call open to open a file:

int open(const char *pathname, int flags);

e pathname: the path to the file you wish to open
* flags: a bitwise OR of options specifying the behavior for opening the file
 returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list). You must include exactly one
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write).

Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it..,

Call open to open a file:

int open(const char *pathname, int flags, mode t mode);
You can also create a new file if the specified file doesn’t exist, by including

O_CREAT as one of the flags. You must also specify a third mode parameter.
* mode: the permissions to attempt to set for a created file

27

Call open to open a file:

int open(const char *pathname, int flags, mode t mode);
You can also create a new file if the specified file doesn’t exist, by including

O_CREAT as one of the flags. You must also specify a third mode parameter.
* mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here. .

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

File Descriptors

A file descriptor is like a "ticket number" representing your currently-open file.

* It is a unigue number assigned by the operating system to refer to that file in
this program.

e Each program has its own file descriptors

* When you wish to refer to the file (e.g. read from it, write to it) you must
provide the file descriptor.

* file descriptors are assigned in ascending order (next FD is lowest unused)

29

Call close to close a file when you’re done with it:

int close(int fd);

* fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system
resources.

* You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

30

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O WRONLY | O CREAT | O EXCL, 0644);

// Close the file now that

// we are done with it

close(fd); Open the file

to be
written to

. touch.c

31

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O WRONLY | O CREAT | O EXCL, 0644);

// Close the file now that

// we are done with it

close(fd); Create the

file if it
doesnt exist

. touch.c

32

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O WRONLY | O CREAT | O EXCL, 0644);

// Close the file now that

// we are done with it

close(fd); If it does

exist, throw
an error

. touch.c

33

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O WRONLY | O CREAT | O EXCL, 0644);

// Close the file now that
// we are done with it
close(fd);

Attempt to set this file’s
perwmissions to rw for
owner, v for all others.

(note: octal numbers start
with leading 0)

. touch.c

34

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O WRONLY | O CREAT | O EXCL, 0644);

// Close the file now that

// we are done with it
close(fd);

. touch.c

35

Plan For Today

* Interacting with the filesystem as programmers

* read() and write()

cp -r /afs/ir/class/cslll/lecture-code/lect5 .

36

Call read to read bytes from an open file:
ssize t read(int fd, void *buf, size t count);

* fd: the file descriptor for the file you'd like to read from

* buf: the memory location where the read-in bytes should be put

e count: the number of bytes you wish to read

* returns -1 on error, O if at end of file, or nonzero if bytes were read

Key idea: read may not read all the bytes you ask it to! The return value tells
you how many were actually read.

Key idea #2: the operating system keeps track of where in a file a file descriptor

is reading from. So the next time you read, it will resume where you left off. .

Call write to write bytes to an open file:
ssize t write(int fd, const void *buf, size t count);

* fd: the file descriptor for the file you'd like to write to

* buf: the memory location storing the bytes that should be written

e count: the number of bytes you wish to write from buf

* returns -1 on error, or otherwise the number of bytes that were written

Key idea: write may not write all the bytes you ask it to! The return value
tells you how many were actually written.

Key idea #2: the operating system keeps track of where in a file a file descriptor

is writing to. So the next time you write, it will write to where you left off. .

Plan For Today

* Interacting with the filesystem as programmers

* Practice: copying files

cp -r /afs/ir/class/cslll/lecture-code/lect5 . 39

Example: Copy

Let's write an example program copy that emulates the built-in cp command. It
takes in two command line arguments (file names) and copies the contents of

the first file to the second.
E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors
2. Read each chunk of data from the source file and write it to the destination
file

copy-soln.c and copy-soln-full.c (with error checking)

File descriptors are a powerful
abstraction for working with files
and other resources. They are
used for files, networking and user

input/output!

Recap

* Recap: filesystem design and modern | |Lecture 5 takeaway: System

fllesvste.ms o calls are functions provided
Interactlng with the fi esystem dsS users by the Operating SyStem to do

* Interacting with the filesystem as tasks we cannot do ourselves.
programmers .
. System calls open/close/read/write are
- open() and close() system calls that work via file
» read() and write() descriptors to create, read
* Practice: copying files from and write to files.

Next time: how can we design a
filesystem that is resilient in the event of
a system crash?

42

