
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 5
File Descriptors and System Calls

😷 masks required

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

2

3

4

Announcements
• Sections start in person tomorrow! Check the course website for your section

assignment and location.
• assign1 YEAH hours recording / slides posted to course website – thanks to

everyone who came out!
• Adding helper hours Fri. 2-4PM (at Nick’s office, Durand building room 331A)

5

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

6

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 1/
lecture 2

Lectures 2-4 This lecture Lectures 6-7

7

Learning Goals
• Learn about the open, close, read and write functions that let us interact with

files
• Get familiar writing programs that read, write and create files
• Learn what the operating system manages for us so that we can interact with

files

8

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as programmers

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

9

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as programmers

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

10

Multi-level Indexes
The Unix V6 filesystem (from 1975) is an example of the “multi-level index”
filesystem design. There are many alternative designs that could be used –
some alterations you could propose might be:
• What if the block size was different?
• What if inodes stored a different number of block numbers?
• What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
• 4KB block size
• Inodes store 14 block numbers
• First 12 block numbers always direct, 13th always singly indirect, 14th always

doubly indirect (no small vs. large schemes)

11

Other Filesystem Design Ideas
Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes
• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
• The last block in a file can be a fragment (0-7 fragments)
• One large block can hold fragments from multiple files
• Get the time efficiency benefit of larger blocks, but the internal fragmentation

benefit of smaller blocks (small files can use fragments)

12

Filesystem Techniques Today
• Filesystem design is a hard problem! Tradeoffs, challenges with large and small

files.
• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap,

internal fragmentation doesn’t matter as much
• Reallocate files as blocks grow – initially allocate blocks one at a time, but

when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters
• ext4 is a popular current Linux filesystem – you may notice similarities!
• NTFS (replacement for FAT) is the current Windows filesystem
• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem

13

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as programmers

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

14

Filesystem: User Perspective
• Studying how we interact with the filesystem as users will inform how we

interact with it as programmers.
• As users, we can run ls to get details about particular files. Using -a shows all

files (even hidden ones), -l shows more info about each file
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

15

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

filename

16

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Last modified time

17

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

size in bytes

18

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Group name

19

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Owner name

20

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

hard links

21

Filesystem Information
troccoli@myth60:~/assign1$ ls -al
total 60
drwx------ 5 troccoli operator 4096 Oct 4 22:42 .
drwxr-xr-x 58 troccoli operator 6144 Oct 1 23:45 ..
-rw------- 1 troccoli operator 1920 Sep 30 14:32 chksumfile.c
-rw------- 1 troccoli operator 1063 Sep 30 14:32 chksumfile.h
-rw------- 1 troccoli operator 839 Sep 30 14:32 custom_tests
-rw------- 1 troccoli operator 509 Sep 30 14:32 directory.c
-rw------- 1 troccoli operator 476 Sep 30 14:32 directory.h
-rw------- 1 troccoli operator 499 Sep 30 14:32 direntv6.h
-rw------- 1 troccoli operator 11426 Sep 30 14:32 diskimageaccess.c

Type and permissions

22

Unix File Permissions

rwx r-x r-x

owner group other

Here, the owner has read, write, and execute permissions,
the group has only read and execute permissions, and the
user also has only read and execute permissions.

23

File Permissions

rw- r-- r--

owner group other

We can represent permissions in binary (1 or 0 for each permission option):
• eg. for permissions above: 110 100 100
• we can further convert each group of 3 into one base-8 digit

base 8 (“octal”): 6 4 4
• So, the permissions for the above file would be 644

24

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as programmers

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

25

System Calls
Functions to interact with the operating system are part of a group of functions
called system calls.
• A system call is a public function provided by the operating system.
• The operating system handles these tasks because they require special

privileges that we do not have in our programs.
• The operating system kernel actually runs the code for a system call,

completely isolating the system-level interaction from your (potentially
harmful) program.
• We are going to examine the system calls for interacting with files. When

writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

26

open()

Call open to open a file:

int open(const char *pathname, int flags);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list). You must include exactly one
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write).
Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it.

27

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

28

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

29

File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that file in

this program.
• Each program has its own file descriptors
• When you wish to refer to the file (e.g. read from it, write to it) you must

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)

30

close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

31

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_EXCL, 0644);

// Close the file now that
// we are done with it
close(fd);

touch.c

Open the file
to be

written to

32

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_EXCL, 0644);

// Close the file now that
// we are done with it
close(fd);

touch.c

Create the
file if it

doesn’t exist

33

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_EXCL, 0644);

// Close the file now that
// we are done with it
close(fd);

touch.c

If it does
exist, throw

an error

34

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_EXCL, 0644);

// Close the file now that
// we are done with it
close(fd);

touch.c

Attempt to set this file’s
permissions to rw for
owner, r for all others.

(note: octal numbers start
with leading 0)

35

Example: Creating a File

// Create the file
int fd = open("myfile.txt", O_WRONLY | O_CREAT | O_EXCL, 0644);

// Close the file now that
// we are done with it
close(fd);

touch.c

36

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as programmers

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

37

read()

Call read to read bytes from an open file:

ssize_t read(int fd, void *buf, size_t count);

• fd: the file descriptor for the file you'd like to read from
• buf: the memory location where the read-in bytes should be put
• count: the number of bytes you wish to read
• returns -1 on error, 0 if at end of file, or nonzero if bytes were read

Key idea: read may not read all the bytes you ask it to! The return value tells
you how many were actually read.
Key idea #2: the operating system keeps track of where in a file a file descriptor
is reading from. So the next time you read, it will resume where you left off.

38

write()

Call write to write bytes to an open file:

ssize_t write(int fd, const void *buf, size_t count);

• fd: the file descriptor for the file you'd like to write to
• buf: the memory location storing the bytes that should be written
• count: the number of bytes you wish to write from buf
• returns -1 on error, or otherwise the number of bytes that were written

Key idea: write may not write all the bytes you ask it to! The return value
tells you how many were actually written.
Key idea #2: the operating system keeps track of where in a file a file descriptor
is writing to. So the next time you write, it will write to where you left off.

39

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as programmers

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

40

Example: Copy
Let's write an example program copy that emulates the built-in cp command. It
takes in two command line arguments (file names) and copies the contents of
the first file to the second.
E.g. ./copy source.txt dest.txt

1. Open the source file and the destination file and get file descriptors
2. Read each chunk of data from the source file and write it to the destination

file

copy-soln.c and copy-soln-full.c (with error checking)

41

File descriptors are a powerful
abstraction for working with files

and other resources. They are
used for files, networking and user

input/output!

42

Recap
• Recap: filesystem design and modern

filesystems
• Interacting with the filesystem as users
• Interacting with the filesystem as

programmers
• System calls
• open() and close()
• read() and write()
• Practice: copying files

Next time: how can we design a
filesystem that is resilient in the event of
a system crash?

Lecture 5 takeaway: System
calls are functions provided
by the operating system to do
tasks we cannot do ourselves.
open/close/read/write are
system calls that work via file
descriptors to create, read
from and write to files.

