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CS111, Lecture 6
Crash Recovery

😷 masks required

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 14 

through 14.1
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Topic 1: Filesystems - How can 
we design filesystems to manage files 
on disk, and what are the tradeoffs 
inherent in designing them?  How 
can we interact with the filesystem in 
our programs?
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Filesystems 
introduction and 

design

Case study: Unix 
V6 Filesystem

Filesystem 
System calls and 
file descriptors
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Lectures 2-4 Lecture 5 Today / Lecture 7
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Learning Goals
• Get practice working with file descriptors in programs
• Understand the goals of crash recovery and potential tradeoffs
• Learn about the role of the free map and block cache in filesystems
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Plan For Today
• Recap: file descriptors and system calls
• Crash Recovery Overview
• Free space management
• Block cache
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Plan For Today
• Recap: file descriptors and system calls
• Crash Recovery Overview
• Free space management
• Block cache
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System Calls
• Functions to interact with the operating system are part of a group of 

functions called system calls.
• A system call is a public function provided by the operating system. They are 

tasks the operating system can do for us that we can't do ourselves.
• open(), close(), read() and write() are 4 system calls we use to interact with 

files.
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open()

A function that a program can call to open a file, and potentially create a file:

int open(const char *pathname, int flags);
int open(const char *pathname, int flags, mode_t mode);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• mode (if applicable): the permissions to attempt to set for a created file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see man page). You must include exactly one 
of O_RDONLY, O_WRONLY, O_RDWR, which specifies how you’ll use the file in this program.
• O_TRUNC: if the file exists already, clear it ("truncate it").
• O_CREAT: if the file doesn't exist, create it
• O_EXCL: the file must be created from scratch, fail if already exists
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File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that 

instance of that file in this program.
• Each program has its own file descriptors
• You can have multiple file descriptors for the same file
• When you wish to refer to the file (e.g. read from it, write to it) you must 

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)
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close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system 
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)
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read() and write()

Call read to read bytes from an open file:

ssize_t read(int fd, void *buf, size_t count);

• fd: the file descriptor for the file you'd like to read from
• buf: the memory location where the read-in bytes should be put
• count: the number of bytes you wish to read
• returns -1 on error, 0 if at end of file, or nonzero if bytes were read (may not read all 

bytes you ask it to!  E.g. if there aren’t that many bytes, or if interrupted)

ssize_t write(int fd, const void *buf, size_t count);

• Same as read(), except the function writes the count bytes in buf to the file, 
and returns the number of bytes written.
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

int main(int argc, char *argv[]) { 
int sourceFD = open(argv[1], O_RDONLY); 
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions); 

copyContents(sourceFD, destinationFD); 

close(sourceFD); 
close(destinationFD); 
return 0; 

}
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

int main(int argc, char *argv[]) { 
int sourceFD = open(argv[1], O_RDONLY); 
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions);

copyContents(sourceFD, destinationFD); 

close(sourceFD); 
close(destinationFD); 
return 0; 

}

”create the file to write to, and 
it must not already exist”
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

void copyContents(int sourceFD, int destinationFD) { 
char buffer[kCopyIncrement]; 
while (true) { 

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer)); 
if (bytesRead == 0) break; 
size_t bytesWritten = 0; 
while (bytesWritten < bytesRead) { 

ssize_t count = write(destinationFD, buffer + bytesWritten, 
bytesRead - bytesWritten); 

bytesWritten += count; 
} 

} 
}
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

void copyContents(int sourceFD, int destinationFD) { 
char buffer[kCopyIncrement]; 
while (true) { 

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer)); 
if (bytesRead == 0) break; 
size_t bytesWritten = 0; 
while (bytesWritten < bytesRead) { 

ssize_t count = write(destinationFD, buffer + bytesWritten, 
bytesRead - bytesWritten); 

bytesWritten += count; 
} 

} 
}

Read in chunks of 
kCopyIncrement bytes
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

void copyContents(int sourceFD, int destinationFD) { 
char buffer[kCopyIncrement]; 
while (true) { 

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer)); 
if (bytesRead == 0) break; 
size_t bytesWritten = 0; 
while (bytesWritten < bytesRead) { 

ssize_t count = write(destinationFD, buffer + bytesWritten, 
bytesRead - bytesWritten); 

bytesWritten += count; 
} 

} 
}

Read a chunk of bytes.  It may 
not be kCopyIncrement bytes!  
If read returns 0, there are no 
more bytes to read.
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

void copyContents(int sourceFD, int destinationFD) { 
char buffer[kCopyIncrement]; 
while (true) { 

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer)); 
if (bytesRead == 0) break; 
size_t bytesWritten = 0; 
while (bytesWritten < bytesRead) { 

ssize_t count = write(destinationFD, buffer + bytesWritten, 
bytesRead - bytesWritten); 

bytesWritten += count; 
} 

} 
}

Now we write this chunk of 
bytes to the destination file.  
We must loop until write
writes them all.
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

void copyContents(int sourceFD, int destinationFD) { 
char buffer[kCopyIncrement]; 
while (true) { 

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer)); 
if (bytesRead == 0) break; 
size_t bytesWritten = 0; 
while (bytesWritten < bytesRead) { 

ssize_t count = write(destinationFD, buffer + bytesWritten, 
bytesRead - bytesWritten); 

bytesWritten += count; 
} 

} 
}

Since write may write only 
some of the bytes, we need to 
just give it the rest of the bytes 
that it hasn’t written yet.
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Example: Copy
The copy program emulates cp; it copies the contents of a source file to a 
specified destination.

void copyContents(int sourceFD, int destinationFD) { 
char buffer[kCopyIncrement]; 
while (true) { 

ssize_t bytesRead = read(sourceFD, buffer, sizeof(buffer)); 
if (bytesRead == 0) break; 
size_t bytesWritten = 0; 
while (bytesWritten < bytesRead) { 

ssize_t count = write(destinationFD, buffer + bytesWritten, 
bytesRead - bytesWritten); 

bytesWritten += count; 
} 

} 
}
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File descriptors are a powerful 
abstraction for working with files 

and other resources. They are 
used for files, networking and user 

input/output!



21

File Descriptors and I/O
There are 3 special file descriptors provided by default to each program:
• 0: standard input (user input from the terminal) - STDIN_FILENO
• 1: standard output (output to the terminal) - STDOUT_FILENO
• 2: standard error (error output to the terminal) - STDERR_FILENO

Programs always assume that 0,1,2 represent 
STDIN/STDOUT/STDERR. Even if we change them! (eg. we close FD 1, 
then open a new file).
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Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it 
print the contents of the source file to the terminal instead of copying it to the 
destination file?

int main(int argc, char *argv[]) { 
int sourceFD = open(argv[1], O_RDONLY); 
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions); 

copyContents(sourceFD, destinationFD); 

close(sourceFD); 
close(destinationFD); 
return 0; 

}

Respond on PollEv: pollev.com/cs111 
or text CS111 to 22333 once to join.
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Example: Copy
What is the smallest 1 line change/hack we could make to this code to make it 
print the contents of the source file to the terminal instead of copying it to the 
destination file?

int main(int argc, char *argv[]) { 
int sourceFD = open(argv[1], O_RDONLY); 
int destinationFD = open(argv[2],

O_WRONLY | O_CREAT | O_EXCL, kDefaultPermissions); 

copyContents(sourceFD, STDOUT_FILENO); 

close(sourceFD); 
close(destinationFD); 
return 0; 

}
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Plan For Today
• Recap: file descriptors and system calls
• Crash Recovery Overview
• Free space management
• Block cache
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Crash Recovery
Sometimes, computers crash or shut down unexpectedly.   In those situations, 
we want to avoid filesystem data loss or corruption as much as possible.

How can we recover from crashes without losing file data or corrupting the 
disk?

assign2: implement a program that can repair a filesystem after a crash!
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Crash Recovery

Key challenge: tradeoffs between 
crash recovery abilities and filesystem 

performance.
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Crash Recovery
Challenge #1 – data loss: crashes can happen at any time, and not all data might 
have been saved to disk.
• E.g. if you saved a file but it hadn’t actually been written to disk yet.
Challenge #2 - inconsistency: Crashes could happen even in the middle of 
operations, and this could leave the disk in an inconsistent state.
• E.g. if a modification affects multiple blocks, a crash could occur when some of 

the blocks have been written to disk but not the others.
• E.g. adding block to file: inode was written to store block number, but block 

wasn’t marked in the filesystem as used (it’s still listed as free)
Ideally, filesystem operations would be atomic, meaning they happen in their 
entirety without interruption – they are never left in an incomplete state.  But 
this isn’t fully possible, since crashes can happen at any time.
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Crash Recovery
To understand crash recovery, we need to understand all places where 
filesystem data is stored and maintained.
• We know about most of the disk itself (e.g. Unix V6 layout), but not how free 

blocks are tracked.  This factors into crash recovery (e.g. free blocks not in a 
consistent state).
• There is also the block cache in memory that stores frequently-used blocks 

accessed from disk.  This factors into crash recovery (e.g. not all updates in 
block cache written to disk).
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Plan For Today
• Recap: file descriptors and system calls
• Crash Recovery Overview
• Free space management
• Block cache



31

Free Space Management
• Early Unix systems (like Unix v6) used a linked list of free blocks 

• Initially sorted, so files allocated contiguously, but over time list becomes scrambled

More common: use a bitmap
• Array of bits, one per block: 1 means bock is free, 0 means in use
• Takes up some space – e.g. 1TB capacity -> 228 4KB blocks -> 32 MB bitmap
• During allocation, search bit map for block close to previous block in file

• Want locality – data likely used next is close by (linked list not as good)

Problem: slow if disk is nearly full, and files become very scattered
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Free Space Management
More common: use a bitmap – an array of bits, one per block, where 1 means 
bock is free, 0 means in use.
• During allocation, search bit map for block close to previous block in file

Problem: slow if disk is nearly full, and blocks very scattered
• Expensive operation to find a free block on a mostly full disk
• Poor locality – data likely to be used next is not close by
Solution: don’t let disk fill up!
• E.g. Linux pretends disk has less capacity than it really has (try df on myth!)
• Increase disk cost, but for better performance
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Free Space Management
The free list / bitmap is important to understand for crash recovery because it is 
a source of crash recovery issues.
• E.g. block assigned to file but not removed from free list / marked as allocated 

in bitmap
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Plan For Today
• Recap: file descriptors and system calls
• Crash Recovery Overview
• Free space management
• Block cache
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Block Cache
Problem: Accessing disk blocks is expensive, especially if we do it repeatedly for 
the same blocks.

Idea: use part of main memory to retain recently-accessed disk blocks. (Many 
OS-es do this).

• A cache is a space to store and quickly access recently- / frequently-used data.
• Frequently-referenced blocks (e.g. indirect blocks for large files) usually in 

block cache.

Challenge: cache size limited; how do we utilize it?  What if it gets full?
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Block Cache
Challenge: cache size limited; how do we utilize it?  What if it gets full?

Least-recently-used “LRU” replacement – If we need something not in the 
cache, we read it from disk and then add it to the cache.  If there’s no room in 
the cache, we remove the least-recently-used element. 

Another challenge: what happens when a block in the cache is modified?  Do 
we stop and wait and immediately write it to disk?  Or do we delay it slightly 
until later?  Argue yes/no! Respond on PollEv: pollev.com/cs111 

or text CS111 to 22333 once to join.
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Block Cache
Another challenge: what happens when a block in the cache is modified?  Do 
we immediately write it to disk?  Pros/cons?

If we immediately write to disk (“synchronous writes”):
• Safe: no data loss because it’s written immediately
• Slow: program must wait to proceed until disk I/O completes
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Block Cache
Another challenge: what happens when a block in the cache is modified?  Do 
we immediately write it to disk?  Pros/cons?

If we don’t immediately write to disk (“delayed writes”):
• Wait a while (Unix chose 30 seconds) in case there are more writes to that 

block, or it is deleted
• Fast and Efficient: writes return immediately, eliminates disk I/Os in many 

cases (e.g. many small writes to the same block)
• Dangerous: may lose data after a system crash!  “Are you willing to lose your 

last 30sec of work in exchange for performance bump?”
• (Side note – fsync system call lets a program force a write to disk)
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Recap
• Recap: file descriptors and system calls
• Crash Recovery Overview
• Free space management
• Block cache

Next time: approaches to crash recovery

Lecture 6 takeaway: Crash 
recovery requires tradeoffs 
with performance.  Both the 
free list/map and block cache 
play a role in filesystem state 
and crash recovery.


