
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 8
Multiprocessing Introduction

😷 masks required

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 4

2

Topic 2: Multiprocessing - How
can our program create and
interact with other programs?
How does the operating system
manage user programs?

3

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Today Lecture 9 Lecture 10

assign3: implement your own shell!

4

Learning Goals
• Understand the limitations and tradeoffs of crash recovery
• Learn how to use the fork() function to create a new process
• Understand how a process is cloned and run by the OS

5

Plan For Today
• Finishing up: Crash Recovery
• Multiprocessing overview
• Introducing fork()

6

Plan For Today
• Finishing up: Crash Recovery
• Multiprocessing overview
• Introducing fork()

7

Crash Recovery
We’ve discussed 3 main approaches to crash recovery:
1. Consistency check on reboot (fsck) – no filesystem changes, run program on

boot to repair whatever we can. But can’t restore everything and may take a
while.

2. Ordered Writes – modify the write operations to always happen in particular
orders, eliminating various kinds of inconsistencies. But requires doing
synchronous writes or tracking dependencies and can leak resources.

3. Write-Ahead Logging – log metadata (and optionally file data) operations
before doing the operations to create a paper trail we can redo in case of a
crash.

8

Write-Ahead Logging (“Journaling”)
Problem: log can get long!
Solution: occasional “checkpoints” – truncate the log occasionally once we
confirm that portion of the log is no longer needed.

Problem: could be multiple log entries for a single “operation” that should
happen atomically.
Solution: have a log mechanism to track “transactions” (atomic operations) and
only replay those if the entire transaction is fully entered into the log. (assign2
wraps each transaction with LogBegin and LogCommit)
Problem: we could replay a log operation that has already happened.
Solution: make all log entries idempotent (doing multiple times has same effect
as doing once). E.g. “append block X to file” (bad) vs. “set block number X to Y”

9

Write-Ahead Logging (“Journaling”)
Problem: log entries must be written synchronously before the operations
Solution: delay writes for log, too (i.e. build log, but don’t write immediately;
when a block cache block is written, write relevant log entries then). Though
this risks losing some log entries.

Logging doesn’t guarantee that everything is preserved, but it does guarantee
that what’s there is consistent (separates durability – data will be preserved –
from consistency – state is consistent)

10

Crash Recovery
Ultimately, tradeoffs between durability, consistency and performance
• E.g. if you want durability, you’re going to have to sacrifice performance
• E.g. if you want highest performance, you’re going to have to give up some

crash recovery capability
• What kinds of failures are most important to recover from, and how much are

you willing to trade off other benefits (e.g. performance)?

Still lingering problems – e.g. disks themselves can fail

11

Demo – Filesystem Recovery
• Assign2 tools let you simulate real filesystems, make them crash, and

experiment with recovery tools
• Implement a program that replays a log after a crash
• Mix of filesystem exploration (playing around with simulated filesystems,

viewing logs and filesystem state) and coding (about ~10-15 lines total)
• You’ll have a chance to play with these tools in the assignment and in section

this week. Let’s see a demo!

12

Demo – Filesystem Recovery
In assign2 you can create, interact with, corrupt and recover Unix v6 filesystems.
Demo (in assign2 starter project):
1. ./mkfsv6 v6.img (makes a new Unix v6 filesystem image called v6.img)
2. mkdir mnt (makes a folder mnt where we will “mount” the filesystem)
3. CRASH_AT=100 ./mountv6 -j v6.img mnt & (makes the v6.img

filesystem image appear in the folder mnt. “&” runs in the background. “-j”
adds journaling. CRASH_AT=100 crashes it after 100 block-write operations.

4. cd mnt (go into mnt to explore the filesystem image)
5. touch `seq 1000` (makes 1000 empty files, named 1 to 1000)
6. cd .. (exit crashed filesystem directory)
7. cp v6.img v6-2.img (make a copy of v6.img called v6-2.img to test

recovery mechanisms)

13

Demo – Filesystem Recovery
In assign2 you can create, interact with, corrupt and recover Unix v6 filesystems.
Demo (in assign2 starter project):
8. ./fsckv6 -y v6.img (run fsck on v6.img and repair it)
9. ./samples/apply_soln v6-2.img (run log recovery on v6-2.img and
repair it)
10. ./mountv6 -j v6.img mnt & (mount v6.img again to see fsck results)
11. cd mnt (examine filesystem to see which of the 1-1000 files are there)
12. cd .. (exit filesystem when done)
13. fusermount –u mnt (unmount v6.img filesystem)
14. Repeat steps 10-13 for v6-2.img to compare logging recovery vs. fsck
15. ./dumplog v6.img (view filesystem log for v6.img)

14

Plan For Today
• Finishing up: Crash Recovery
• Multiprocessing overview
• Introducing fork()

15

Process 5621

Multiprocessing Terminology
Program: code you write to execute tasks
Process: an instance of your program running; consists of program and
execution state.

Key idea: multiple processes can run the same program

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
printf("Goodbye!\n");
return 0;

}

16

Multiprocessing
Your computer runs many processes simultaneously - even with just 1 processor
core (how?)
• "simultaneously" = switch between them so fast humans don't notice
• Your program thinks it's the only thing running
• OS schedules tasks - who gets to run when
• Each gets a little time, then has to wait
• Many times, waiting is good! E.g. waiting for key press, waiting for disk
• Caveat: multicore computers can truly multitask

17

Playing with Processes
When you run a program from the terminal, it runs in a new process.
• The OS gives each process a unique "process ID" number (PID)
• PIDs are useful once we start managing multiple processes
• getpid() returns the PID of the current process

// getpid.c
#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[]) {

pid_t myPid = getpid();
printf("My process ID is %d\n", myPid);
return 0;

}

$./getpid
My process ID is 18814

$./getpid
My process ID is 18831

18

Plan For Today
• Finishing up: Crash Recovery
• Multiprocessing overview
• Introducing fork()

19

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process A

$./myprogram

20

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process A

$./myprogram
Hello, world!

21

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process A

$./myprogram
Hello, world!

22

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process A
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process B

$./myprogram
Hello, world!

23

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process A
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
fork();
printf("Goodbye!\n");
return 0;

}

Process B

$./myprogram
Hello, world!
Goodbye!
Goodbye!

24

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process A

$./myprogram

25

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process A

$./myprogram
Hello, world!

26

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process A
int main(int argc, char *argv[]) {

int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process B

$./myprogram
Hello, world!

27

fork()
fork() creates a second process that is a clone of the first: pid_t fork();

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process A
int main(int argc, char *argv[]) {

int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process B

$./myprogram
Hello, world!
Goodbye, 2!
Goodbye, 2!

28

fork()
fork() creates a second process that is a clone of the first: pid_t fork();
• parent (original) process forks off a child (new) process
• The child starts execution on the next program instruction. The

parent continues execution with the next program instruction. The order from
now on is up to the OS!
• fork() is called once, but returns twice (why?)

Illustration courtesy of Roz Cyrus.

29

fork()
fork() creates a second process that is a clone of the first: pid_t fork();
• parent (original) process forks off a child (new) process
• Everything is duplicated in the child process (except PIDs are different)

• File descriptor table - this explains how the child can still output to the same terminal!
• Mapped memory regions (the address space) - regions like stack, heap, etc. are copied

30

fork()

int main(int argc, char *argv[]) {
int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process A
int main(int argc, char *argv[]) {

int x = 2;
printf("Hello, world!\n");
fork();
printf("Goodbye, %d!\n", x);
return 0;

}

Process B

(Am I the parent
or the child?)

Is there a way for the processes to tell which is the parent and which is the child?

31

fork()
Key Idea: the return value of fork() is different in the parent and the child.

fork() creates a second process that is a clone of the first: pid_t fork();
• parent (original) process forks off a child (new) process
• In the parent, fork() will return the PID of the child (only way for parent to get

child's PID)
• In the child, fork() will return 0 (this is not the child's PID, it's just 0)

32

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 111

$./myprogram

33

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 111

$./myprogram
Hello, world!

34

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 111
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 112

$./myprogram
Hello, world!

35

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 111
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 112

$./myprogram
Hello, world!
fork returned 112
fork returned 0

36

fork()
In the parent, fork() will return the PID of the child. In the child, fork() will
return 0 (this is not the child's PID, it's just 0).

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 111
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
pid_t pidOrZero = fork();
printf("fork returned %d\n",

pidOrZero);
return 0;

}

Process 112

$./myprogram
Hello, world!
fork returned 112
fork returned 0

$./myprogram
Hello, world!
fork returned 0
fork returned 112

OR

37

We can no longer assume
the order in which our

program will execute! The
OS decides the order.

38

fork()
• In the parent, fork() will return the PID of the child
• In the child, fork() will return 0 (this is not the child's PID, it's just 0)
• if fork() returns < 0, that means an error occurred
• getppid() gets the PID of your parent and getpid() gets your own PID
• This is how your shell works – shell (parent) forks off child process to run a

command you enter. When you run a command, its parent is the shell.

39

Recap
• Finishing up: Crash Recovery
• Multiprocessing overview
• Introducing fork()

Next time: more about fork, plus how to
wait for child processes to finish, and
how to run other programs.

Lecture 8 takeaway: fork()
allows a process to fork off a
cloned child process. The
order of execution between
parent and child is up to the
OS! We can distinguish
between parent and child
using fork’s return value (child
PID in parent, 0 in child).

