CS111], Lecture 9

Multiprocessing System Calls

:

L]
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
=7 I I I aS kS req u I red Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS198 Section Leading!

cs198@cs.stanford.edu
cs198.stanford.edu — application due 10/20

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.
Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

Topic 2: Multiprocessing - How
can our program create and

interact with other programs?
How does the operating system
manage user programs?

CS111 Topic 2: Multiprocessing

Managing
Multiprocessing processes and
Introduction running other
programs

Inter-process

communication
with pipes

Lecture 8 Today Lecture 10

assign3: implement your own shell!

Learning Goals

e Understand how a process is cloned and run by the OS
* Learn how to use waitpid() to wait for a child process to finish.
e Understand how to use execvp() to run a new program within a process.

Plan For Today

* Recap: fork()
* Cloning Processes

e waitpid() and waiting for child processes
* Demo: waiting for children
* execvp()

cp -r /afs/ir/class/cslll/lecture-code/lect9 . 6

* Recap: fork()

Plan For Today

cp -r /afs/ir/class/cslll/lecture-code/lect9 .

A system call that creates a new child process
* The "parent" is the process that creates the other "child" process
* From then on, both processes are running the code after the fork

* The child process is identical to the parent, except:
* it has a new Process ID (PID)

 for the parent, fork() returns the PID of the child; for the child, fork() returns O
 fork() is called once, but returns twice

pid t pidOrZero = fork();
// both parent and child run code here onwards
printf("This is printed by two processes.\n");

fork() is used pervasively in applications and systems. For example:
* A shell forks a new process to run an entered program command

* Most network servers run many copies of the server in different processes

 When your kernel boots, it starts the system.d program, which forks off all the
services and systems for your computer

Processes are the first step in understanding concurrency, another key principle
In computing systems.

int main(int argc, char *argv[]) {
printf("Hello from process %d! (parent %d)\n", getpid(), getppid());
pid t pidOrZero = fork();
assert(pidOrZero >= 0);
printf("Bye from process %d! (parent %d)\n", getpid(), getppid());
return 0;

$./intro-fork . .
Hello from process 29686! (parent 29351) M The parent of the original
Bye from process 29686! (parent 29351) process is the shell - the
Bye from process 29687! (parent 29686) program that you run in the

$./intro-fork terminal.

Hello from process 29688! (parent 29351) KRN T-ReIfelIgTsl-Re)Mtsl=NeEIL0Id:1a]e

Bye from process 29689! (parent 29688) : . |
Bye from process 29688! (parent 29351) child output is up to the OS!

Which of these outputs is not possible?

// Assume parent PID 111, child PID 112

pid t pidOrZero = fork();

printf("hello, world!\n");

printf("goodbye! (fork returned %d)\n", pidOrZero);

A) C)

hello, world! hello, world!

hello, world! goodbye! (fork returned 112)
goodbye! (fork returned 0) hello, world!

goodbye! (fork returned 112) goodbye! (fork returned 0)
B) D)

hello, world! hello, world!

hello, world! goodbye! (fork returned 112)
goodbye! (fork returned 112) goodbye! (fork returned 0)
goodbye! (fork returned 0) hello, world!

Respond on pollEv: pollev.com/cs111 or text CS111 to 22333 once to join. 1

& When poll is active, respond at pollev.com/cs111

3 Text CS111 to 22333 once to join

Which of these outputs is *not* possible?

Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app

* Cloning Processes

Plan For Today

cp -r /afs/ir/class/cslll/lecture-code/lect9 .

13

What happens to variables/addresses?

int main(int argc, char *argv[]) {

char str[128];

strcpy(str, "Hello");

printf("str's address is %p\n", str);

pid t pidOrZero = fork();

if (pidOrZero == ©) { // The child should modify str
printf("I am the child. str's address is %p\n", str);
strcpy(str, "Howdy");
printf("I am the child and I changed str to %s. str's address is

still %p\n", str, str);

} else { // The parent should sleep and print out str
printf("I am the parent. str's address is %p\n", str);
printf("I am the parent, and I'm going to sleep for 2sec.\n");
sleep(2);
printf("I am the parent. I just woke up. str's address is %p,

and its value is %s\n", str, str);
}
. fork-copy.c ,

return 0;

Process Clones

$./fork-copy

str's address is Ox7ffc8cfa9990

I am the parent. str's address is Ox7ffc8cfa9990

I am the parent, and I'm going to sleep for 2sec.

I am the child. str's address is @x7ffc8cta9990

I am the child and I changed str to Howdy. str's address is still
Ox7ffc8cta9990

I am the parent. I just woke up. str's address is Ox7ffc8cfa9990, and its
value is Hello

* How can the parent and child use the same address to store different data?
* Each program thinks it is given all memory addresses to use
* The operating system maps these virtual addresses to physical addresses

 When a process forks, its virtual address space stays the same

* The operating system will map the child's virtual addresses to different physical
addresses than for the parent

15

Process Clones

$./fork-copy

str's address is Ox7ffc8cfa9990

I am the parent. str's address is Ox7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is Ox7ffc8cta9990

I am the child and I changed str to Howdy. str's address is still
Ox7ffc8cta9990

I am the parent. I just woke up. str's address is Ox7ffc8cfa9990, and its
value is Hello

Isn't it expensive to make copies of all memory when forking?
* The operating system only lazily makes copies.

* It will have them share physical addresses until one of them changes its

memory contents to be different than the other.
* This is called copy on write (only make copies when they are written to).

Plan For Today

e waitpid() and waiting for child processes

cp -r /afs/ir/class/cslll/lecture-code/lect9 . 17

It would be nice iIf there
was a function we could
call that would "stall"” our

program until the child is
finished.

waitpid()

A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

 pid: the PID of the child to wait on (we'll see other options later)
e status: where to put info about the child's termination (or NULL)
e options: optional flags to customize behavior (always O for now)
* the function returns when the specified child process exits

* the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait
on)

* |f the child process has already exited, this returns immediately - otherwise, it blocks

19

waitpid()

// waitpid.c
int main(int argc, char *argv[]) {
printf("Before.\n");
pid t pidOrZero = fork();
if (pidOrZero == 0) {
sleep(2);
printf("I (the child) slept and the parent waited for me.\n");
} else {
pid t result = waitpid(pidOrZero, NULL, 0);
printf("I (the parent) finished waiting for the child. This
always prints last.\n");

¥

return 0;

Before.

I (the child) slept and the parent waited for me.
I (the parent) finished waiting for the child. This always prints 1last.

waitpid()

// waitpid-status.c
int main(int argc, char *argv[]) {
pid t pid = fork();
if (pid == 0) {
printf("I'm the child, and the parent will wait up for me.\n");

return 111; // contrived exit status (not a bad number, though)
} else {

int status;
int result = waitpid(pid, &status, 0);
if (WIFEXITED(status)) {

printf("Child exited with status %d.\n", WEXITSTATUS(status));
} else {

printf("Child terminated abnormally.\n");
}

return 0;

I'm the child, and the parent will wait up for me.

Child exited with status 111.

waitpid()

int status;
int result = waitpid(pid, &status, 0);
if (WIFEXITED(status)) {
printf("Child exited with status %d.\n", WEXITSTATUS(status));
} else {
printf("Child terminated abnormally.\n");
}

Provided macros (see man page for full list) let us extract info from the status.
* WIFEXITED — check if child terminated normally
 WEXITSTATUS — get exit status of child

This output will be the same every time! The parent will always wait for the child to

finish before continuing.)

waitpid()

A parent process should always wait on its children processes.
* A process that finished but not waited on by its parent is called a zombie 2.

e Zombies take up system resources (until they are ultimately cleaned up later
by the OS)

* Calling waitpid in the parent "reaps" the child process (cleans it up)

* |f a child is still running, waitpid in the parent will block until it finishes, and then clean it
up
* |f a child process is a zombie, waitpid will return immediately and clean it up

 Child processes whose parent process terminates without waiting on them get
the init process (PID 1) as their parent.

23

Make sure to reap your zombie children.

(wait, what?)

Plan For Today

 Demo: waiting for children

cp -r /afs/ir/class/cslll/lecture-code/lect9 . 25

Waiting for Children

Problem: if we have multiple children and want to wait on all of them, in what
order do we wait on them to finish?

Ideally we could say “wait until one of my children finishes”.

* A parent can pass -1 as the PID to waitpid to wait on any of its children.
* Key Idea: the children may terminate in any order!

* If waitpid returns -1 and sets errno to ECHILD, this means there are no more
children.

Let’s see a demo!
reap-as-they-exit.c e

* execvp()

Plan For Today

cp -r /afs/ir/class/cslll/lecture-code/lect9 .

27

execvp()

The most common use for fork is not to spawn multiple processes to split up

work, but instead to run a completely separate program under your control and
communicate with it.

* This is what a shell is; it is a program that prompts you for commands, and it
executes those commands in separate processes.

28

execvp()

execvp is a function that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at the given path, completely cannibalizing the current process.
* |f successful, execvp never returns in the calling process
* |f unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.

e For our programs, path and argv[0] will be the same

execvp has many variants (see man execvp) but we’ll just be using execvp. 29

execvp()

int main(int argc, char *argv[]) {
printf("Hello, world!\n");
char *args[] = {"/bin/1s", "-1", "/usr/class/cslll/lecture-code",
}s5
execvp(args[0], args);
printf("This only prints if an error occurred.\n");
return 0;

$./execvp-demo
Hello, world!

total 4

2 troccoli operator 2048 Oct 9 16:21 lect5
2 troccoli operator 2048 Oct 13 22:19 lect9

Implementing a Shell

A shell is essentially a program that repeats asking the user for a command and
running that command (Demo: first-shell-soin.c)

How do we run a command entered by the user?

1. Call fork to create a child process

2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid

31

* Recap: fork() Lecture 9 takeaway:

* Cloning Processes processes can be run by the

* waitpid() and waiting for child OS in any order. waitpid lets

Processes a parent process wait for a

* Demo: waiting for children child process to finish.

* execvp() execvp runs another program
In the current process,
completely cannibalizing the

Next time: making our own shell, and current process.

how to have multiple processes

communicate with pipes.
32

