
1
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 9
Multiprocessing System Calls

😷 masks required

2
This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under CreaGve Commons AHribuGon 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS198 Section Leading!

cs198@cs.stanford.edu
cs198.stanford.edu – application due 10/20

3

Topic 2: Multiprocessing - How
can our program create and
interact with other programs?
How does the operating system
manage user programs?

4

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Today Lecture 10

assign3: implement your own shell!

5

Learning Goals
• Understand how a process is cloned and run by the OS
• Learn how to use waitpid() to wait for a child process to finish.
• Understand how to use execvp() to run a new program within a process.

6

Plan For Today
• Recap: fork()
• Cloning Processes
• waitpid() and waiting for child processes
• Demo: waiting for children
• execvp()

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

7

Plan For Today
• Recap: fork()
• Cloning Processes
• waitpid() and wai>ng for child processes
• Demo: wai>ng for children
• execvp()

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

8

fork()
A system call that creates a new child process
• The "parent" is the process that creates the other "child" process
• From then on, both processes are running the code after the fork
• The child process is identical to the parent, except:

• it has a new Process ID (PID)
• for the parent, fork() returns the PID of the child; for the child, fork() returns 0
• fork() is called once, but returns twice

pid_t pidOrZero = fork();
// both parent and child run code here onwards
printf("This is printed by two processes.\n");

9

fork()
fork() is used pervasively in applications and systems. For example:
• A shell forks a new process to run an entered program command
• Most network servers run many copies of the server in different processes
• When your kernel boots, it starts the system.d program, which forks off all the

services and systems for your computer

Processes are the first step in understanding concurrency, another key principle
in computing systems.

10

fork()
int main(int argc, char *argv[]) {

printf("Hello from process %d! (parent %d)\n", getpid(), getppid());
pid_t pidOrZero = fork();
assert(pidOrZero >= 0);
printf("Bye from process %d! (parent %d)\n", getpid(), getppid());
return 0;

}

$./intro-fork
Hello from process 29686! (parent 29351)
Bye from process 29686! (parent 29351)
Bye from process 29687! (parent 29686)

$./intro-fork
Hello from process 29688! (parent 29351)
Bye from process 29689! (parent 29688)
Bye from process 29688! (parent 29351)

• The parent of the original
process is the shell - the
program that you run in the
terminal.

• The ordering of the parent and
child output is up to the OS!

11

Which of these outputs is not possible?

A)

hello, world!
hello, world!
goodbye! (fork returned 0)
goodbye! (fork returned 112)

C)

hello, world!
goodbye! (fork returned 112)
hello, world!
goodbye! (fork returned 0)

B)

hello, world!
hello, world!
goodbye! (fork returned 112)
goodbye! (fork returned 0)

D)

hello, world!
goodbye! (fork returned 112)
goodbye! (fork returned 0)
hello, world!

// Assume parent PID 111, child PID 112
pid_t pidOrZero = fork();
printf("hello, world!\n");
printf("goodbye! (fork returned %d)\n", pidOrZero);

Respond on pollEv: pollev.com/cs111 or text CS111 to 22333 once to join.

12

13

Plan For Today
• Recap: fork()
• Cloning Processes
• waitpid() and waiting for child processes
• Demo: waiting for children
• execvp()

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

14

What happens to variables/addresses?
int main(int argc, char *argv[]) {

char str[128];
strcpy(str, "Hello");
printf("str's address is %p\n", str);
pid_t pidOrZero = fork();
if (pidOrZero == 0) { // The child should modify str

printf("I am the child. str's address is %p\n", str);
strcpy(str, "Howdy");
printf("I am the child and I changed str to %s. str's address is

still %p\n", str, str);
} else { // The parent should sleep and print out str

printf("I am the parent. str's address is %p\n", str);
printf("I am the parent, and I'm going to sleep for 2sec.\n");
sleep(2);
printf("I am the parent. I just woke up. str's address is %p,

and its value is %s\n", str, str);
}
return 0;

}
fork-copy.c

15

Process Clones

• How can the parent and child use the same address to store different data?
• Each program thinks it is given all memory addresses to use
• The operating system maps these virtual addresses to physical addresses
• When a process forks, its virtual address space stays the same
• The operating system will map the child's virtual addresses to different physical

addresses than for the parent

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is 0x7ffc8cfa9990
I am the child and I changed str to Howdy. str's address is still
0x7ffc8cfa9990
I am the parent. I just woke up. str's address is 0x7ffc8cfa9990, and its
value is Hello

16

Process Clones

Isn't it expensive to make copies of all memory when forking?
• The operating system only lazily makes copies.
• It will have them share physical addresses until one of them changes its

memory contents to be different than the other.
• This is called copy on write (only make copies when they are written to).

$./fork-copy
str's address is 0x7ffc8cfa9990
I am the parent. str's address is 0x7ffc8cfa9990
I am the parent, and I'm going to sleep for 2sec.
I am the child. str's address is 0x7ffc8cfa9990
I am the child and I changed str to Howdy. str's address is still
0x7ffc8cfa9990
I am the parent. I just woke up. str's address is 0x7ffc8cfa9990, and its
value is Hello

17

Plan For Today
• Recap: fork()
• Cloning Processes
• waitpid() and waiting for child processes
• Demo: waiting for children
• execvp()

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

18

It would be nice if there
was a function we could

call that would "stall" our
program until the child is

finished.

19

waitpid()
A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on (we'll see other options later)
• status: where to put info about the child's termination (or NULL)
• options: optional flags to customize behavior (always 0 for now)
• the function returns when the specified child process exits
• the return value is the PID of the child that exited, or -1 on error (e.g. no child to wait

on)
• If the child process has already exited, this returns immediately - otherwise, it blocks

20

waitpid()
// waitpid.c
int main(int argc, char *argv[]) {

printf("Before.\n");
pid_t pidOrZero = fork();
if (pidOrZero == 0) {

sleep(2);
printf("I (the child) slept and the parent waited for me.\n");

} else {
pid_t result = waitpid(pidOrZero, NULL, 0);
printf("I (the parent) finished waiting for the child. This

always prints last.\n");
}
return 0;

}
Before.
I (the child) slept and the parent waited for me.
I (the parent) finished waiting for the child. This always prints last.

21

waitpid()
// waitpid-status.c
int main(int argc, char *argv[]) {

pid_t pid = fork();
if (pid == 0) {

printf("I'm the child, and the parent will wait up for me.\n");
return 111; // contrived exit status (not a bad number, though)

} else {
int status;
int result = waitpid(pid, &status, 0);
if (WIFEXITED(status)) {

printf("Child exited with status %d.\n", WEXITSTATUS(status));
} else {

printf("Child terminated abnormally.\n");
}
return 0;

}
}
I'm the child, and the parent will wait up for me.
Child exited with status 111.

22

waitpid()
...
int status;
int result = waitpid(pid, &status, 0);
if (WIFEXITED(status)) {

printf("Child exited with status %d.\n", WEXITSTATUS(status));
} else {

printf("Child terminated abnormally.\n");
}
...

Provided macros (see man page for full list) let us extract info from the status.
• WIFEXITED – check if child terminated normally
• WEXITSTATUS – get exit status of child

This output will be the same every time! The parent will always wait for the child to
finish before continuing.

23

waitpid()
A parent process should always wait on its children processes.
• A process that finished but not waited on by its parent is called a zombie🧟.
• Zombies take up system resources (un>l they are ul>mately cleaned up later

by the OS)
• Calling waitpid in the parent "reaps" the child process (cleans it up)

• If a child is s<ll running, waitpid in the parent will block un<l it finishes, and then clean it
up

• If a child process is a zombie, waitpid will return immediately and clean it up

• Child processes whose parent process terminates without wai>ng on them get
the init process (PID 1) as their parent.

24

Make sure to reap your zombie children.
(wait, what?)

25

Plan For Today
• Recap: fork()
• Cloning Processes
• waitpid() and waiting for child processes
• Demo: waiting for children
• execvp()

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

26

Waiting for Children
Problem: if we have multiple children and want to wait on all of them, in what
order do we wait on them to finish?
Ideally we could say ”wait until one of my children finishes”.

• A parent can pass -1 as the PID to waitpid to wait on any of its children.
• Key Idea: the children may terminate in any order!
• If waitpid returns -1 and sets errno to ECHILD, this means there are no more

children.

Let’s see a demo!

reap-as-they-exit.c

27

Plan For Today
• Recap: fork()
• Cloning Processes
• waitpid() and waiting for child processes
• Demo: waiting for children
• execvp()

cp -r /afs/ir/class/cs111/lecture-code/lect9 .

28

execvp()
The most common use for fork is not to spawn multiple processes to split up
work, but instead to run a completely separate program under your control and
communicate with it.
• This is what a shell is; it is a program that prompts you for commands, and it

executes those commands in separate processes.

29

execvp()
execvp is a func>on that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at the given path, completely cannibalizing the current process.
• If successful, execvp never returns in the calling process
• If unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main funcLon, via the argv parameter.
• For our programs, path and argv[0] will be the same

execvp has many variants (see man execvp) but we’ll just be using execvp.

30

execvp()
// execvp-demo.c
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
char *args[] = {"/bin/ls", "-l", "/usr/class/cs111/lecture-code",

NULL};
execvp(args[0], args);
printf("This only prints if an error occurred.\n");
return 0;

}

$./execvp-demo
Hello, world!
total 4
drwx------ 2 troccoli operator 2048 Oct 9 16:21 lect5
drwx------ 2 troccoli operator 2048 Oct 13 22:19 lect9

31

Implementing a Shell
A shell is essentially a program that repeats asking the user for a command and
running that command (Demo: first-shell-soln.c)

How do we run a command entered by the user?
1. Call fork to create a child process
2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid

32

Recap
• Recap: fork()
• Cloning Processes
• waitpid() and wai>ng for child

processes
• Demo: wai>ng for children
• execvp()

Next Mme: making our own shell, and
how to have mul>ple processes
communicate with pipes.

Lecture 9 takeaway:
processes can be run by the
OS in any order. waitpid lets
a parent process wait for a
child process to finish.
execvp runs another program
in the current process,
completely cannibalizing the
current process.

