CS 111 Project 1:
Reading Unix V6 File Systems

Layers

Block layer (filsys.h, unixfilesystem.h, diskimg.h, diskimg.c):
= Read physical blocks from the device

Inode layer (ino.h, inode.h, inode.c):

= Find inodes on the device, map block index within file to physical
block number

File layer(file.h, file.c):
= Given <inumber, block index>, find and read physical block from device

You
> must

Directory layer (direntv6.h, directory.h, directory.c): implement
= Read directory file to find a given name

Pathname layer (pathname.h, pathname.c):
= Parse a file path (“/a/b/c”), read many directories to find file’s inumber

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 2

Block Layer

int diskimg_readsector(int fd, int sectorNum, void *buf)
= Must always read full sectors

Each sector: 512 bytes (DISKIMG_SECTOR_SIZE)

AN

o 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16
1

Disk: array of sectors (block == sector)

I

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 3

Unix V6 Disk Layout

e Boot block: tiny program used to start up system

e Superblock: overall information about filesystem
= See filsys.h
= Example: s_isize (# of blocks of inodes)

e Everything else: file blocks, directory blocks, indirect blocks

Superblock
Boot Inodes Everything else

blockw (A \ [A \

o 1 2 3 4 5 6 500 501 502 503 504 505 506 507

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 4

Metadata

e Information stored on disk that allows us to identify what everything is

e Some metadata stored in fixed position on disk
Superblock
Inodes

e Some metadata is identified by other metadata
Inodes tell us which blocks are indirect blocks, etc.

Superblock
Boot Inodes Everything else
blockw (A \ [A \
O 1 2 3 4 5 6 500 501 502 503 504 505 506 507

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 5

struct unixfilesystem

e Overall information passed into the functions you’ll write
(declared in unixfilesystem.h)

truct unixfil t L
> riunct éjfré';x ! esysAem { “handle” for disk image;

) pass to dskimage readsector

struct filsys superblock;

N

Superblock read
from disk (see filsys.h)

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 6

Inode Layer

e Read an inode into memory:
int inode_iget(struct unixfilesystem *fs, int inumber,
struct inode *inp);
e Given block index in file, find physical block number on disk:

int inode_indexlookup(struct unixfilesystem *fs,
struct inode *inp, int fileBlockindex);

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 7

inode_liget

int inode_iget(struct unixfilesystem *fs, int inumber,
struct inode *inp);

16 17 32

12 3
(Y AR |

e inumbers start at 1, not 0.

Superblock = You must zero-index it
Boot e Inodes are 32 bytes
blockw (16 inodes per block)

= DISKIMG_SECTOR_SIZE = 512
= DISKIMG_SECTOR_SIZE /32 =16

o 1 2 3 4 5 6

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 8

Writing Clean Code

Don’t use numbers such as 1 and 2

Instead, use symbols: ROOT_INUMBER (= 1) and
INODE_START_SECTOR (= 2)

Worse: character buffers

char buffer[512];
diskimg_readsector(fs->dfd, sector, buffer);
memcpy(inp, buffer+32*ix, 32);

Better: typed buffers (helpful for inode iget !!!)

struct inode inodes[INODES_PER_BLOCK];
diskimg_readsector(fs->dfd, sector, inodes);
*inp = inodesJix];

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 9

O=_2NWrOWTO N

2 Inode Formats

<= 8 data
blocks

doubly

indirect indirect
255 255

Large

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

T

7 +—>0 44— 0
; \
4
3 I
2 255 ’
= 5 / T
i_addr
\ _/ ’ data
3 = blocks
indirecm J

Slide 10

I_mode

16-bit value with many packed fields
(see ino.h): permissions

#define IALLOC 0100000 r)
#define IFMT 060000 } ' N A
#define IFDIR 040000 P ' S— '0
#define IFCHR 020000

#define IFBLK 060000 J

#define ILARG 010000

#define ISUID 04000
#define ISGID 02000

Use binary ops to test fields:

#define ISVTX 01000 o Is file large? (Helpful for
#define IREAD 0400 inode_indexlookup !!!)
#define IWRITE 0200 if (inode.i_mode & ILARG) ...

#define IEXEC 0100

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 11

File Layer

e Read a block of a file into memory:
int file_getblock(struct unixfilesystem *fs, int inumber,
int fileBlockindex, void *buf);
e Steps: Get file’s inode, find disk block number, read disk block

¢ Returns number of valid bytes in the buffer (< DISKIMG_SECTOR_SIZE
for last block)

<&
<

file size

v

0 1 2 3
Blocks in file

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 12

Directory Layer

o Find directory entry with given name: e« Struct direntv6 (from direntv6.h):

int directory_findname(struct direntv6 {
struct unixfilesystem *fs, uint16_t d_inumber;
const char *name, char d_name[MAX_COMPONENT_LENGTH]I;
int dirinumber, };
struct direntvé *dirEnt); o Note: d_name is only null-terminated if it
o Read directory file one block at a has fewer than
time: use file_getblock() MAX_COMPONENT_LENGTH chars!

Each block contains Use strncmp() for to compare with name, not
NUM_DIRENTS_PER_BLOCK entries strcmp()

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 13

Pathname Layer

e Scan a multi-level file path, find inumber for file:

int pathname_lookup(struct unixfilesystem *fs,
const char *pathname);

o Example' Ihomellesliel bash profile

Want inumber for this file

First Iook up “home”
in root directory

Then look up “leslie”
in that directory Done!

Then lookup “.bash_profile”
in that directory

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 14

Pathname Layer, cont’'d

Use strsep() to parse the path to get each string before “/”

But, strsep() modifies its argument; can’t modify pathname argument to
pathname_lookup()

Must copy pathname

Use recursion or iteration?
= |teration is likely to be simpler

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 15

Odds and Ends

Functions that may be useful in this project:
strsep
strlen

strcpy
strncmp
No need for heap allocation of memory

Most functions can return errors

= Must check for errors:
e calling diskimg_readsector
e Functions you wrote and later call may return errors

= Print human-readable messages after errors (and propagate errors upwards)
Don’t duplicate code from lower layers: use the functions
Valgrind will work for this project

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 16

