
CS 111 Project 1:

Reading Unix V6 File Systems

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems) Slide 2

Layers
● Block layer (filsys.h, unixfilesystem.h, diskimg.h, diskimg.c):

▪ Read physical blocks from the device

● Inode layer (ino.h, inode.h, inode.c):
▪ Find inodes on the device, map block index within file to physical

block number

● File layer(file.h, file.c):
▪ Given <inumber, block index>, find and read physical block from device

● Directory layer (direntv6.h, directory.h, directory.c):
▪ Read directory file to find a given name

● Pathname layer (pathname.h, pathname.c):
▪ Parse a file path (“/a/b/c”), read many directories to find file’s inumber

You
must

implement

Slide 3

Block Layer

int diskimg_readsector(int fd, int sectorNum, void *buf)
▪ Must always read full sectors

0 1 2 3 4 5 6 7 8 9 10 1
1

...
12 13 14 15 16

Disk: array of sectors (block == sector)

Each sector: 512 bytes (DISKIMG_SECTOR_SIZE)

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 4

Unix V6 Disk Layout

0 1 2 3 4 5 6 500 501 502

...
503 504 505 506 507

● Boot block: tiny program used to start up system
● Superblock: overall information about filesystem

▪ See filsys.h
▪ Example: s_isize (# of blocks of inodes)

● Everything else: file blocks, directory blocks, indirect blocks

Boot
block

Superblock

...

Inodes Everything else

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 5

Metadata
● Information stored on disk that allows us to identify what everything is
● Some metadata stored in fixed position on disk

▪ Superblock
▪ Inodes

● Some metadata is identified by other metadata
▪ Inodes tell us which blocks are indirect blocks, etc.

0 1 2 3 4 5 6 500 501 502

...
503 504 505 506 507

Boot
block

Superblock

...

Inodes Everything else

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 6

struct unixfilesystem
● Overall information passed into the functions you’ll write

(declared in unixfilesystem.h)

struct unixfilesystem {
int dfd;
struct filsys superblock;

};

“handle” for disk image;
pass to dskimage_readsector

Superblock read
from disk (see filsys.h)

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 7

Inode Layer
● Read an inode into memory:

int inode_iget(struct unixfilesystem *fs, int inumber,
struct inode *inp);

● Given block index in file, find physical block number on disk:

int inode_indexlookup(struct unixfilesystem *fs,
struct inode *inp, int fileBlockIndex);

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

inode_iget
int inode_iget(struct unixfilesystem *fs, int inumber,

struct inode *inp);

● inumbers start at 1, not 0.
▪ You must zero-index it

● Inodes are 32 bytes
(16 inodes per block)
▪ DISKIMG_SECTOR_SIZE = 512

▪ DISKIMG_SECTOR_SIZE / 32 = 16

Slide 8

0 1 2 3 4 5 6

Boot
block

Superblock

...

1 2 3 16

... ...

17 32

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 9

Writing Clean Code
● Don’t use numbers such as 1 and 2
● Instead, use symbols: ROOT_INUMBER (= 1) and

INODE_START_SECTOR (= 2)

● Worse: character buffers
char buffer[512];
diskimg_readsector(fs->dfd, sector, buffer);
memcpy(inp, buffer+32*ix, 32);

● Better: typed buffers (helpful for inode_iget !!!)
struct inode inodes[INODES_PER_BLOCK];
diskimg_readsector(fs->dfd, sector, inodes);
*inp = inodes[ix];

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 10

2 Inode Formats

i_addr
0

7

1
2
3
4
5
6

<= 8 data
blocks

i_addr
0

7

1
2
3
4
5
6

0
1

255

0
1

255

0
1

255

...

doubly
indirect

...

...

indirect

indirect

data
blocks

Small Large
CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

i_mode
16-bit value with many packed fields
(see ino.h):

#define IALLOC 0100000
#define IFMT 060000
#define IFDIR 040000
#define IFCHR 020000
#define IFBLK 060000
#define ILARG 010000
#define ISUID 04000
#define ISGID 02000
#define ISVTX 01000
#define IREAD 0400
#define IWRITE 0200
#define IEXEC 0100

Use binary ops to test fields:
● Is file large? (Helpful for

inode_indexlookup !!!)
if (inode.i_mode & ILARG) ...

Slide 11

permissions

015

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 12

File Layer
● Read a block of a file into memory:

int file_getblock(struct unixfilesystem *fs, int inumber,
int fileBlockIndex, void *buf);

● Steps: Get file’s inode, find disk block number, read disk block
● Returns number of valid bytes in the buffer (< DISKIMG_SECTOR_SIZE

for last block)

0 1 2 3
Blocks in file

file size

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Directory Layer
● Find directory entry with given name:

int directory_findname(
struct unixfilesystem *fs,
const char *name,
int dirinumber,
struct direntv6 *dirEnt);

● Read directory file one block at a
time: use file_getblock()

▪ Each block contains
NUM_DIRENTS_PER_BLOCK entries

● Struct direntv6 (from direntv6.h):
struct direntv6 {

uint16_t d_inumber;
char d_name[MAX_COMPONENT_LENGTH];

};

● Note: d_name is only null-terminated if it
has fewer than
MAX_COMPONENT_LENGTH chars!
▪ Use strncmp() for to compare with name, not

strcmp()

Slide 13CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 14

Pathname Layer
● Scan a multi-level file path, find inumber for file:

int pathname_lookup(struct unixfilesystem *fs,
const char *pathname);

● Example: /home/leslie/.bash_profile
Want inumber for this file

First look up “home”
in root directory

Then look up “leslie”
in that directory

Then lookup “.bash_profile”
in that directory

Done!

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 15

Pathname Layer, cont’d
● Use strsep() to parse the path to get each string before “/”
● But, strsep() modifies its argument; can’t modify pathname argument to

pathname_lookup()

● Must copy pathname

● Use recursion or iteration?
▪ Iteration is likely to be simpler

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

Slide 16

Odds and Ends
● Functions that may be useful in this project:

strsep

strlen

strcpy

strncmp

● No need for heap allocation of memory
● Most functions can return errors

▪ Must check for errors:
● calling diskimg_readsector
● Functions you wrote and later call may return errors

▪ Print human-readable messages after errors (and propagate errors upwards)
● Don’t duplicate code from lower layers: use the functions
● Valgrind will work for this project

CS 111 YEAH Hours: Project 1 (Reading Unix V6 File Systems)

