CS 111 Project 2:

Journaling File System




Introduction

e Your mission: implement part of crash recovery in a journaling file
system and explore crash recovery mechanisms

= Replay log entries
= Answer readme questions

e Not much code to write!

e Due Thursday at 11:59pm (late submissions through Saturday)

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 2



Logging Overview

Problem: file system operations often require updates to multiple blocks

= Example: to create a new file, must
e Add entry to data block of directory
e Update directory’s inode
e Write file’s inode

Potential inconsistencies: system could crash with some (but not all)
blocks written to disk

Log allows consistency to be restored quickly after crashes:
= Record info about updates in append-only log
= |dentify groups of related ops in log: transactions
= Make sure log flushed to disk before any affected block
= After crash, replay all complete transactions from log

This implementation logs only metadata (not data of regular files)

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 3



Extended V6 Disk Layout

superblock log
boot header
block
inodes data/indirect blocks | freemap log
‘ v ' ‘advances
Original V6 File System circularly
(Project 2)

e Added log storage

e Replaced “chunky linked list” of free blocks with bitmap
= More modern, efficient
= Linked list operations don’t work well with log: not idempotent

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 4



Log Entries

e Must be idempotent:
= Updates may or may not have occurred to disk blocks before crash
= Or, system could crash again while replaying log
= Replaying log entry must work even if disk blocks already updated

e Example: suppose log entry says “append new entry <name, inumber> to
directory?”
e For this project, 3 primary log entry types:
= Patch bytes

= Allocate block
= Free block

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 5



LogPatch

struct LogPatch {
uint16_t blockno;
uint16_t offset_in_block;
std::vector<uint8_t> bytes;

5

offset_in_block ﬁ ﬁ— bytes.size()

A

Disk blocks blockno

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 6



LogPatch

struct LogPatch { o Creating a file:
uint16_t blockno; = One patch to write new entry in directory
uint16_t offset_in_block; = One patch to update directory inode
std::vector<uint8_t> bytes; = One patch to initialize file inode

2

offset_in_block ﬁ ﬁ— bytes.size()

A

Disk blocks blockno

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 7



LogBlockAlloc and LogBlockFree

Mark block as either allocated or free:

struct LogBlockAlloc {
uint16_t blockno;
uint8_t zero_on_replay;

5

struct LogBlockFree {
uint16_t blockno;

5

blocks
free
freemap —
|01101001 HH111“]1]10000|00]11110
N H_I
/ blocks
blockno In use

CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 8




Other Log Entries

Mark transaction boundaries: Log wrap-around:
struct LogBegin { struct LogRewind {
// No data! // No data!
% %
struct LogCommit {
// No data!
%

No entries will be replayed from a
transaction unless both LogBegin and
LogCommit are present

CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 9



Replaying the Log

e Code we’ve written:
= Read log info from disk
= Find the beginning and end of the region to replay, check for consistency
= Read log entries from disk
= Make sure each transaction is complete
= |nvoke your code to replay individual entries

e You write methods in replay.cc to replay each log entry type:
void V6Replay::apply(const LogPatch &);
void V6Replay::apply(const LogBlockAlloc &);
void V6Replay::apply(const LogBlockFree &);

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 10



Reading and Writing the Disk

class V6Replay {
VG6FS &fs_;

struct V6FS {

Ref<Buffer> bread(uint16_t blockno);
Ref<Buffer> bget(uint16_t blockno);

bread and bget both return pointer to
a block in the file cache

bread: read contents of block from
disk

bget: doesn’t bother to read from disk

Only use bget when you are going to
completely overwrite block!!!

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 11



Ref<Buffer>

e Smart pointer:
= Use just like Buffer*
= Maintains a reference count for the cache block
= Cache block won’t be evicted as long as there are Ref’s for it

struct Buffer : CacheEntryBase {
char mem_[SECTOR_SIZE];

void bdwrite();
5
e Can read or write mem_ directly (e.g. memcpy / memset)
e Call bdwrite() when finished writing: marks cache block dirty

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 12



Block Allocation Bitmap

struct V6Replay {
Bitmap freemap_;

}

if (freemap_.at(blockno)) ... /* Is block free? */
freemap_.at(blockno) = true; /* Mark block free. */
freemap_.at(blockno) = false; /* Mark block in use. */

Unlike other parts of the disk, the Bitmap is entirely loaded into memory

Check out the implementation of Bitmap in bitmap.hh!

= How does it allow individual bits to be addressed?
CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 13



Part 2: Short Anhswer

e Exploration of included tools like:
= dumplog to print out the log
= fsck to check image for consistency
= mountvb to mount a filesystem image to try out

e Spec walks through how to use them and what to look for
e Demos from lecture and section may also be helpful

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 14



Part 3: Ethics and Trust

OS runs commands in a privileged ‘kernel’ mode that users cannot

What if a user could execute such commands directly?
= Can we trust the system with private files and confidential information?

What implicit trust do we have in OSes when we use them?

What can users and OS developers do about this?

Slide 17



Project Infrastructure

e Based on FUSE (File System in User space):
= File system code runs in a user application
= Linux kernel forwards file system requests to the application
= Result: a fully-functional file system!

e Check out the extra assign2 infrastructure design page for lots of cool
(optional) info on how all this works

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 18



Questions?

Slide 19



