
CS 111 Project 2:

Journaling File System

CS 111 YEAH Hours: Project 2 (Journaling File System) Slide 2

Introduction
● Your mission: implement part of crash recovery in a journaling file

system and explore crash recovery mechanisms
▪ Replay log entries
▪ Answer readme questions

● Not much code to write!
● Due Thursday at 11:59pm (late submissions through Saturday)

Slide 3

Logging Overview
● Problem: file system operations often require updates to multiple blocks

▪ Example: to create a new file, must
● Add entry to data block of directory
● Update directory’s inode
● Write file’s inode

● Potential inconsistencies: system could crash with some (but not all)
blocks written to disk

● Log allows consistency to be restored quickly after crashes:
▪ Record info about updates in append-only log
▪ Identify groups of related ops in log: transactions
▪ Make sure log flushed to disk before any affected block
▪ After crash, replay all complete transactions from log

● This implementation logs only metadata (not data of regular files)
CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 4

Extended V6 Disk Layout

● Added log storage
● Replaced “chunky linked list” of free blocks with bitmap

▪ More modern, efficient
▪ Linked list operations don’t work well with log: not idempotent

boot
block

superblock

inodes data/indirect blocks

Original V6 File System
(Project 2)

log
header

logfreemap

advances
circularly

CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 5

Log Entries
● Must be idempotent:

▪ Updates may or may not have occurred to disk blocks before crash
▪ Or, system could crash again while replaying log
▪ Replaying log entry must work even if disk blocks already updated

● Example: suppose log entry says “append new entry <name, inumber> to
directory?”

● For this project, 3 primary log entry types:
▪ Patch bytes
▪ Allocate block
▪ Free block

CS 111 YEAH Hours: Project 2 (Journaling File System)

...

Slide 6

LogPatch
struct LogPatch {

uint16_t blockno;
uint16_t offset_in_block;
std::vector<uint8_t> bytes;

};

...
blockno

offset_in_block bytes.size()

Disk blocks

CS 111 YEAH Hours: Project 2 (Journaling File System)

...

LogPatch
struct LogPatch {

uint16_t blockno;
uint16_t offset_in_block;
std::vector<uint8_t> bytes;

};

● Creating a file:
▪ One patch to write new entry in directory
▪ One patch to update directory inode
▪ One patch to initialize file inode

Slide 7

...
blockno

offset_in_block bytes.size()

Disk blocks

CS 111 YEAH Hours: Project 2 (Journaling File System)

LogBlockAlloc and LogBlockFree

Mark block as either allocated or free:

struct LogBlockAlloc {
uint16_t blockno;
uint8_t zero_on_replay;

};

struct LogBlockFree {
uint16_t blockno;

};

Slide 8

01101001 11111111 11110000 00111110

blocks
free

blocks
in useblockno

freemap

CS 111 YEAH Hours: Project 2 (Journaling File System)

Other Log Entries
Mark transaction boundaries:

struct LogBegin {
// No data!

};

struct LogCommit {
// No data!

};

No entries will be replayed from a
transaction unless both LogBegin and
LogCommit are present

Log wrap-around:

struct LogRewind {
// No data!

};

Slide 9CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 10

Replaying the Log
● Code we’ve written:

▪ Read log info from disk
▪ Find the beginning and end of the region to replay, check for consistency
▪ Read log entries from disk
▪ Make sure each transaction is complete
▪ Invoke your code to replay individual entries

● You write methods in replay.cc to replay each log entry type:
void V6Replay::apply(const LogPatch &);
void V6Replay::apply(const LogBlockAlloc &);
void V6Replay::apply(const LogBlockFree &);

CS 111 YEAH Hours: Project 2 (Journaling File System)

Reading and Writing the Disk
class V6Replay {

V6FS &fs_;
...

}

● bread and bget both return pointer to
a block in the file cache

● bread: read contents of block from
disk

● bget: doesn’t bother to read from disk
● Only use bget when you are going to

completely overwrite block!!!

Slide 11CS 111 YEAH Hours: Project 2 (Journaling File System)

struct V6FS {
...
Ref<Buffer> bread(uint16_t blockno);
Ref<Buffer> bget(uint16_t blockno);
...

}

Slide 12

Ref<Buffer>
● Smart pointer:

▪ Use just like Buffer*

▪ Maintains a reference count for the cache block
▪ Cache block won’t be evicted as long as there are Ref’s for it

struct Buffer : CacheEntryBase {
char mem_[SECTOR_SIZE];
...
void bdwrite();

};

● Can read or write mem_ directly (e.g. memcpy / memset)
● Call bdwrite() when finished writing: marks cache block dirty

CS 111 YEAH Hours: Project 2 (Journaling File System)

Block Allocation Bitmap
struct V6Replay {

...
Bitmap freemap_;
...

}

if (freemap_.at(blockno)) ... /* Is block free? */
freemap_.at(blockno) = true; /* Mark block free. */
freemap_.at(blockno) = false; /* Mark block in use. */

Unlike other parts of the disk, the Bitmap is entirely loaded into memory
Check out the implementation of Bitmap in bitmap.hh!

▪ How does it allow individual bits to be addressed?
Slide 13CS 111 YEAH Hours: Project 2 (Journaling File System)

Part 2: Short Answer

Slide 14CS 111 YEAH Hours: Project 2 (Journaling File System)

● Exploration of included tools like:
▪ dumplog to print out the log
▪ fsck to check image for consistency
▪ mountv6 to mount a filesystem image to try out

● Spec walks through how to use them and what to look for
● Demos from lecture and section may also be helpful

Slide 17

Part 3: Ethics and Trust
● OS runs commands in a privileged ‘kernel’ mode that users cannot
● What if a user could execute such commands directly?

▪ Can we trust the system with private files and confidential information?

● What implicit trust do we have in OSes when we use them?
● What can users and OS developers do about this?

Slide 18

Project Infrastructure
● Based on FUSE (File System in User space):

▪ File system code runs in a user application
▪ Linux kernel forwards file system requests to the application
▪ Result: a fully-functional file system!

● Check out the extra assign2 infrastructure design page for lots of cool
(optional) info on how all this works

CS 111 YEAH Hours: Project 2 (Journaling File System)

Slide 19

Questions?

