
CS 111 Assignment 3
BYOS (Build your own shell)!

fear the tree

Demo commands:

1. ./samples/stsh_soln
2. ./samples/stsh_soln < input.txt

Stanford Shell (stsh) Demo

grep abc < stsh.cc | wc -l > out.txt

pipeline.input = “stsh.cc”

pipeline.output = “out.txt”

pipeline.commands = [com_A, com_B]

com_A: command = { .command = “grep”,
.tokens = [“abc”], .argv = [“grep”,
“abc”] }

com_B: command = { .command = “wc”,
.tokens = [“-l”], .argv = [“wc”, “-l”
] }

Overview of Parser

Single Commands

Tips:

1. fork()returns child’s pid to
parent and 0 to child

2. Parent should always wait on their
children to avoid them becoming
zombies

3. execvp() starts a new program
by wiping the original one, so it
never returns if successful

4. Syntax for raise an exception:

throw SOME_EXCEPTION(err_msg)

Two Processes Pipeline
1. These two child processes should

run simultaneously (e.g. sleep 2 |
sleep 3 will wait for ~3 seconds,
not 5).

2. Remember to close unused file
descriptors (“FDs”).

3. dup2 is very useful! You can
duplicate a FD to whichever
number you like.

4. You can use pipe2 with
O_CLOEXEC instead of pipe to
save yourself some close calls.

5. Recall that children inherit copies of
their parent’s FDs.

note: you should call waitpid at the end

Arbitrarily long pipelines
Pipeline of more than two processes

cat file.txt | sort | wc

➔ The output of cat file.txt becomes the input of sort
➔ The output of sort becomes the input of wc
➔ N processes and N - 1 pipes
➔ The first program only has its STDOUT redirected
➔ The last program only has its STDIN redirected

At this point, you should strive to generalize your previous 2-process pipeline solution!

sort
write read

cat file.txt wc
write read

Credit: CS110 slides by Sophie Decoppet

Input and Output Redirection

- Input redirection: redirect STDIN to read from an existing file
- Output redirection: redirect STDOUT to write to a (possibly existing) file

cat < inputFile.txt | wc > outputFile.txt

Credit: CS110 slides by Sophie Decoppet

Input and Output Redirection

- Input redirection: redirect STDIN to read from an existing file
- Output redirection: redirect STDOUT to write to a (possibly existing) file

cat < inputFile.txt | wc > outputFile.txt

Input file output file

Credit: CS110 slides by Sophie Decoppet

Input and Output Redirection

- Input redirection: redirect STDIN to read from an existing file
- Output redirection: redirect STDOUT to write to a (possibly existing) file

cat < inputFile.txt | wc > outputFile.txt

wc

write read

cat inputFile.txt outputFile.txt

Credit: CS110 slides by Sophie Decoppet

Input and Output Redirection

- Input redirection: redirect STDIN to read from an existing file
- Output redirection: redirect STDOUT to write to a (possibly existing) file

cat < inputFile.txt | wc > outputFile.txt

wc

write read

cat inputFile.txt outputFile.txt

Open this file
using open()

Open or create(!) this
file using open()

Credit: CS110 slides by Sophie Decoppet

Input and Output Redirection

- Hint: Only the STDIN of the first process and/or the STDOUT of the last
process will ever change because of I/O redirection.

- Hint #2: Once you’ve opened the input and/or output files appropriately,
consider how we can leverage what we know about FDs to redirect input or
output to an open file.

- Don’t forget error handling!
wc

write read

cat inputFile.txt outputFile.txt

Open this file
using open()

Open or create(!) this
file using open()

Credit: CS110 slides by Sophie Decoppet

Testing - sanity check is not exhaustive!

Good Start: Short test programs

- conduit: reads one character from standard input every second and (after a
possible delay) publishes one or more copies of that letter

- spin: spins for n seconds
- sigsegv: spins for n seconds and then raise SIGSEGV.
- split: forks and waits for a child which spins for n seconds
- open_fds: prints its currently open file descriptors

Use provided reference solution

./samples/stsh-soln

GDB

You will need to run some special commands to use GDB with stsh. Please refer to the
assignment specification for the juicy details.

Valgrind

You can use Valgrind to track open file descriptors with valgrind --track-fds=yes
./stsh although it is not supported for debugging memory leaks or errors on this
assignment.

inspect-fds.py

If you log into the same Myth machine from another SSH session, you can run
./samples/inspect-fds.py stsh to see all the file descriptors in use by stsh (or any
program you pass in).

Print statements (this one speaks for itself)

Debugging

Not to bash your shell too much, but stsh
>> everything else

Any questions?

