CS 111 assign5 YEAH Hours:
Thread Dispatcher / Locks / CVs

Overall Task

The threads you’ve been using so far are implemented by Linux (“system
threads”)

This project: use one system thread to implement any number of
simulated threads

Also implement your own mutex and condition variable types

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 2

Assignment Overview

e Part 1: Dispatcher
e Part 2: Mutex
e Part 3: Condition

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 3

Thread Class

Thread(std: :function<void()> main)
= Constructor: runs main as the top-level function in the thread

void schedule()
= Add the associated thread to the back of the ready queue

void Thread: :redispatch()
= Run a different thread; current thread will block if it hasn’t been scheduled.

void Thread::exit()
= Terminate current thread

void Thread::yield()
= Invoke schedule() followed by redispatch(); allows other threads to run

Thread* Thread::current()

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 4

Class Static Variables

class Foo {

int Xx;
int y;
static int z;
} Foo F
X: 24 00
y: 13 x: 18

Va

Instance variables: —____ —F99
one in each instance X: 59
of object y:

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

z: 87

\

Static variable:
one variable, shared
across all instances

Slide 5

Class Static Methods

class Foo {
public:
methodl(int x);
static method2(char *s);

} Normal method:
Foo f1; * Invoked on object instance

/ « Can access instance variables
fl.methodl1l(14);

Foo: :method2 (“xyzzy”); -~ Static methoc_l: | | |
* Not associated with a particular instance
« No this variable accessible in method
e (Can access static variables

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 6

Example: static.cc

class Demo {
public:

Demo();

~Demo () ;

static int num_Tive();
private:

static int Tive_objects;

}s
int Demo::1live_objects = 0;
Demo: :Demo() {

Tive_objects++;
}

Demo: :~Demo() {
Tive_objects--;
}

int Demo: :num_Tlive() {
return Tive_objects;
}

o

int main(int argc, char **argv)

{
std::cout << "Initial number of 1live objects: “
<< Demo::num_live() << std::endl;
Demo *dl = new Demo();
Demo *d2 = new Demo();
Demo *d3 = new Demo();
std::cout << "New number of Tive objects: *“
<< Demo::num_live() << std::endl;
delete d2;
delete d3;
std::cout << "Live objects after deleting 2: “
<< Demo::num_live() << std::endl;
delete di;
}

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 7

Managing Stacks

Stack class created for you to use:
Stack(void(*start) (Thread *), Thread *t);
void stack_switch(Stack *current, Stack *next);

Stack object holds:

= Space for call stack
* Place to save stack pointer when stack isn’t active

Constructor takes a function as argument
= This function will be invoked the first time the stack is activated via stack_switch
= Passed the specified thread as a parameter when it is called

stack_switch does a context switch
= Save registers on current stack
= Save spin current
= Load sp from next
= Restore registers from new stack
= Return in new context

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 9

Preemption

void timer_init(uint64_t usec, std::function<void()> handler);
void intr_enable(bool on);
class IntrGuard;

e Preemption requires interrupts

e timer_init causes timer handler to be called periodically

e For safety, need to disable interrupts when touching data shared by
multiple threads

e IntrGuard makes it easy to disable interrupts
= Creating an IntrGuard object saves current state, disables interrupts
= Destroying the IntrGuard restores interrupts to original state
= Similar to std: :unique_Tlock

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 13

Timer lecture example: interrupt.cc

void timer_interrupt_handler() {
cout << "Timer 1interrupt occurred” << endl;
}

int main(int argc, char *argv[]) {
timer_init (500000, timer_interrupt_handler);
while (true) {}

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 14

Disabling interrupts: interrupt2.cc

/* Atomic 1is a quick short cut here to make counter atomic for operations Tlike
* incrementing without having to worry about race conditions.

-k/

atomic<size_t> counter(0);

void timer_interrupt_handler() {
cout << "Timer interrupt occurred with counter “ << counter << endl;
ks

int main(int argc, char *argv[]) {
int toggle_interval = 1'000'000'000;
size_t next_toggle = toggle_interval;

timer_init(500000, timer_interrupt);
while (true) {
counter++;

if (counter >= next_toggle) {

intr_enable(!intr_enabled());
next_toggle += toggle_interval;

} CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 15

Assignment Overview

e Part 1: Dispatcher
e Part 2: Mutex
e Part 3: Condition

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 16

Classes to

class Mutex {
public:
void lock();
void unlock();
bool mine();

}s;

e Similarto std: :mutex except:

= Additional method mine:
indicates whether caller owns Mutex

Implement

class Condition {
public:
void wait(Mutex &m);
void notify_one();
bool notify_all(Q);
s

e Similarto

std: :condition_variable_any
except:

= Argument to wait is Mutex, not
std::unique_lock orstd: :mutex

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 17

Uniprocessor Locks from Lecture

class Lock { void Lock::unlock() {
Lock() {} IntrGuard guard;
int locked = O; if (g.empty() {
ThreadQueue q; locked = 0;
}s } else {
unblockThread(q.remove());
void Lock::lock() { 1
IntrGuard guard; }
if (llocked) {
locked = 1;
} else {
g.add(currentThread);
blockThread() ;
}

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 18

Blocking Threads

When new thread created, which
state is it in?

How do we know if thread is ready? Ready

How can we tell if thread is

running? / \

How does running thread block
itself? Call Thread: :yield()?

Once thread blocks, how to find it
to wake it up?

What if thread->schedule() is
never called for blocked thread?

— | Blocked

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 19

Project Notes

Implementation of Condition is similar to Mutex

Use IntrGuard objects to disable interrupts

Use only public methods of Thread class

The Condition class should use only public methods of Mutex

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 20

Sample Test: mutex_basic

Mutex m;

void basic_threadl()

{
m.lock();

std::cout << "thread
Thread::yield();
std::cout << "thread
Thread::yield();
std::cout << "thread
m.unlock();
m.lock();

std::cout << "thread

}

void basic_thread2()
{

std::cout << "thread
m.lock();

std::cout << "thread
m.unlock();

yielding while holding lock" << std::endl;
yielding again while holding Tock" << std::endl;

releasing lock then trying to reacquire" << std::endl;

reacquired lock" << std::endl;

attempting to lock" << std::endl;

acquired lock; now unlocking" << std::endl;

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 21

Sample Test: mutex_basic

void

mutex_basic_test()

{
new Thread(basic_threadl);
new Thread(basic_thread2);
intr_enable(false);
Thread: :redispatch();

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 22

