
CS 111 assign5 YEAH Hours:

Thread Dispatcher / Locks / CVs

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs) Slide 2

Overall Task
● The threads you’ve been using so far are implemented by Linux (“system

threads”)
● This project: use one system thread to implement any number of

simulated threads
● Also implement your own mutex and condition variable types

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 3

Assignment Overview
● Part 1: Dispatcher
● Part 2: Mutex
● Part 3: Condition

Slide 4

Thread Class
Thread(std::function<void()> main)

§ Constructor: runs main as the top-level function in the thread

void schedule()
§ Add the associated thread to the back of the ready queue

void Thread::redispatch()
§ Run a different thread; current thread will block if it hasn’t been scheduled.

void Thread::exit()
§ Terminate current thread

void Thread::yield()
§ Invoke schedule() followed by redispatch(); allows other threads to run

Thread* Thread::current()

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 5

Class Static Variables
class Foo {

int x;
int y;
static int z;

}
x: 24
y: 13

Foo

x: 18
y: 7

Foo

x: 199
y: 62

FooInstance variables:
one in each instance
of object

z: 87

Static variable:
one variable, shared
across all instances

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 6

Class Static Methods
class Foo {
public:

method1(int x);
static method2(char *s);

}

Foo f1;

f1.method1(14);

Foo::method2(“xyzzy”);

Normal method:
• Invoked on object instance
• Can access instance variables

Static method:
• Not associated with a particular instance
• No this variable accessible in method
• Can access static variables

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Example: static.cc
class Demo {
public:

Demo();
~Demo();
static int num_live();

private:
static int live_objects;

};

int Demo::live_objects = 0;

Demo::Demo() {
live_objects++;

}

Demo::~Demo() {
live_objects--;

}

int Demo::num_live() {
return live_objects;

}

int main(int argc, char **argv)
{

std::cout << "Initial number of live objects: “
<< Demo::num_live() << std::endl;

Demo *d1 = new Demo();
Demo *d2 = new Demo();
Demo *d3 = new Demo();

std::cout << "New number of live objects: “
<< Demo::num_live() << std::endl;

delete d2;
delete d3;

std::cout << "Live objects after deleting 2: “
<< Demo::num_live() << std::endl;

delete d1;
}

Slide 7CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 9

Managing Stacks
● Stack class created for you to use:

Stack(void(*start)(Thread *), Thread *t);

void stack_switch(Stack *current, Stack *next);

● Stack object holds:
§ Space for call stack
§ Place to save stack pointer when stack isn’t active

● Constructor takes a function as argument
§ This function will be invoked the first time the stack is activated via stack_switch
§ Passed the specified thread as a parameter when it is called

● stack_switch does a context switch
§ Save registers on current stack
§ Save sp in current
§ Load sp from next
§ Restore registers from new stack
§ Return in new context

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 13

Preemption
void timer_init(uint64_t usec, std::function<void()> handler);
void intr_enable(bool on);
class IntrGuard;

● Preemption requires interrupts
● timer_init causes timer handler to be called periodically
● For safety, need to disable interrupts when touching data shared by

multiple threads
● IntrGuard makes it easy to disable interrupts

§ Creating an IntrGuard object saves current state, disables interrupts
§ Destroying the IntrGuard restores interrupts to original state
§ Similar to std::unique_lock

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Timer lecture example: interrupt.cc
void timer_interrupt_handler() {

cout << "Timer interrupt occurred“ << endl;
}

int main(int argc, char *argv[]) {
timer_init(500000, timer_interrupt_handler);
while (true) {}

}

Slide 14CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Disabling interrupts: interrupt2.cc
/* Atomic is a quick short cut here to make counter atomic for operations like
* incrementing without having to worry about race conditions.
*/

atomic<size_t> counter(0);

void timer_interrupt_handler() {
cout << "Timer interrupt occurred with counter “ << counter << endl;

}

int main(int argc, char *argv[]) {
int toggle_interval = 1'000'000'000;
size_t next_toggle = toggle_interval;

timer_init(500000, timer_interrupt);
while (true) {

counter++;

if (counter >= next_toggle) {
intr_enable(!intr_enabled());
next_toggle += toggle_interval;

}
}

} Slide 15CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

CS 111 Section Notes: Project 3 (Thread Dispatcher) Slide 16

Assignment Overview
● Part 1: Dispatcher
● Part 2: Mutex
● Part 3: Condition

Classes to Implement
class Mutex {
public:

void lock();
void unlock();
bool mine();

};

● Similar to std::mutex except:
§ Additional method mine:

indicates whether caller owns Mutex

class Condition {
public:

void wait(Mutex &m);
void notify_one();
bool notify_all();

};

● Similar to
std::condition_variable_any
except:
§ Argument to wait is Mutex, not
std::unique_lock or std::mutex

Slide 17CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Uniprocessor Locks from Lecture
class Lock {

Lock() {}
int locked = 0;
ThreadQueue q;

};

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

void Lock::unlock() {
IntrGuard guard;
if (q.empty() {

locked = 0;
} else {

unblockThread(q.remove());
}

}

Slide 18CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 19

Blocking Threads
● When new thread created, which

state is it in?
● How do we know if thread is ready?
● How can we tell if thread is

running?
● How does running thread block

itself? Call Thread::yield()?
● Once thread blocks, how to find it

to wake it up?
● What if thread->schedule() is

never called for blocked thread?

Ready

Running Blocked

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 20

Project Notes
● Implementation of Condition is similar to Mutex
● Use IntrGuard objects to disable interrupts
● Use only public methods of Thread class
● The Condition class should use only public methods of Mutex

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 21

Sample Test: mutex_basic
Mutex m;

void basic_thread1()
{

m.lock();
std::cout << "thread 1 yielding while holding lock" << std::endl;
Thread::yield();
std::cout << "thread 1 yielding again while holding lock" << std::endl;
Thread::yield();
std::cout << "thread 1 releasing lock then trying to reacquire" << std::endl;
m.unlock();
m.lock();
std::cout << "thread 1 reacquired lock" << std::endl;

}

void basic_thread2()
{

std::cout << "thread 2 attempting to lock" << std::endl;
m.lock();
std::cout << "thread 2 acquired lock; now unlocking" << std::endl;
m.unlock();

}
CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

Slide 22

Sample Test: mutex_basic
void
mutex_basic_test()
{

new Thread(basic_thread1);
new Thread(basic_thread2);
intr_enable(false);
Thread::redispatch();

}

CS 111 YEAH Hours: Assignment 5 (Thread Dispatcher/Locks/CVs)

