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Practice	Final	Exam	Solutions 
 

1. Multiprocessing Mania 
Part A: First and Last Lines 

First line: {0: 0} 

Last line: {0: 1, 111: 4}  

 

Answer key explanation: The very first cout statement will always be run by the parent first, 
because it happens before the child is forked off.  The map initially has just one entry in it with key 
0, value 0.  The very last cout statement will always be run by the parent last because it will only 
run after the child process terminates and is cleaned up.  The map at the end in the parent has two 
entries in it.  The 0: 1 comes from the fact that the value for key 0 is incremented inside the while 
loop when the parent is cleaning up the child process.  The 111:4 comes from the line right after 
the fork, which for the parent will have pidOrZero equal to 111. 

 

Part B: Possible Outputs 

{0: 0} 

{0: 0, 111: 4}  

{0: 4, 111: 5} 

{0: 4, 111: 5} 

{0: 1, 111: 4} 

{0: 0} 

{0: 4, 111: 5} 

{0: 0, 111: 4}  

{0: 4, 111: 5} 

{0: 1, 111: 4} 

{0: 0} 

{0: 4, 111: 5} 

{0: 4, 111: 5} 

{0: 0, 111: 4}  

{0: 1, 111: 4} 

 

Answer key explanation: the parent prints 3 times in total, and the child prints twice.  The parent 
always prints first and last, while the three lines in the middle (2 from chid, 1 from parent) could be 
reordered, hence the multiple possible outputs.  In output #1, the parent prints twice, then the 
child prints twice, then the parent prints once.  In output #2, the parent and the child alternate 
printing (parent-child-parent-child-parent).  In output #3, the parent prints first, the child prints 
twice, and the parent prints twice. 

 

  



	 2	

2. Bridge Crossing 
 

using namespace std; 
 
class Bridge { 
public: 
    Bridge(int weight_limit); 
    void arrive(int direction, int weight); 
    void leave(int direction, int weight); 
     
private: 
    mutex lock_; 
 
    // Maximum weight the bridge can sustain. 
    int capacity; 
     
    // Total weight of cars in each direction on the bridge now 
    int current_load_0; 
    int current_load_1; 
 
    // Total weight of cars in each direction that are waiting to cross. 
    int waiting_load_0; 
    int waiting_load_1; 
     
    // Indicates that a car has left the bridge. 
    condition_variable_any car_left; 
}; 
 
Bridge::Bridge(int weight_limit) { 
    capacity = weight_limit; 
    current_load_0 = 0; 
    current_load_1 = 0; 
    waiting_load_0 = 0; 
    waiting_load_0 = 0; 
} 
 
void Bridge::arrive(int direction, int weight) { 
    unique_lock<mutex> ul(lock_); 
    if (direction == 0) { 
        waiting_load_0 += weight; 
        while ((current_load_0 + current_load_1 + weight > capacity) 
               || ((current_load_0 + weight > capacity / 2) && 
                   (current_load_0 + weight + current_load_1 + waiting_load_1 
> capacity))) { 
            car_left.wait(ul); 
        } 
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        waiting_load_0 -= weight; 
        current_load_0 += weight; 
    } else { 
        waiting_load_1 += weight; 
        while ((current_load_0 + current_load_1 + weight > capacity) 
               || ((current_load_1 + weight > capacity / 2) && 
                   (current_load_1 + weight + current_load_0 + waiting_load_0 
> capacity))) { 
            car_left.wait(ul); 
        } 
 
        waiting_load_1 -= weight; 
        current_load_1 += weight; 
    } 
} 
 
void Bridge::leave(int direction, int weight) { 
    unique_lock<mutex> ul(lock_); 
    if (direction == 0) current_load_0 -= weight; 
    else current_load_1 -= weight; 
    car_left.notify_all(); 
} 
 
 
Answer key explanation: First, we notice that the management we are doing is having a car wait 
until it can cross, and then cross.  Whether it can cross is determined by how much weight is 
currently on the bridge, as well as how much weight is in the cars currently waiting in the opposite 
direction (“However, if the total weight of cars traveling or waiting to travel in one direction does 
not consume half of the limit, then the other direction may consume the remainder.”).  Therefore, 
this means we must store the weight going in each direction and the weight waiting in each 
direction, as well as the total weight limit. 

 

Like the multithreading assignment, we must think through how this state is updated.  All the 
values are initialized in the constructor, and when a car arrives it should be added to its direction’s 
waiting weight.  When a car is free to cross (meaning it’s done waiting and is now crossing / will 
return from arrive), we subtract its weight from waiting and add it to the direction’s crossing 
weight.  And finally, when leave is called, we subtract its weight from its direction’s crossing 
weight. 

 

We must also think about the event(s) that we are waiting on, and when we know those events 
have happened.  Here, the main thing we are waiting on is when there is sufficient capacity to 
cross.  A car arriving will wait for this to happen, and a car leaving will notify that this event has 
happened since their weight is no longer factored in and other cars may cross.  We don’t care 
which direction a car is going in this case, so we can use one condition variable. 
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A car cannot cross (must wait) under the following conditions: 

1. the bridge cannot support the car’s weight with all other cars currently crossing 

2. the bridge can support the car’s weight, but the direction they are going in can’t accommodate 
them without exceeding 50% of the capacity, and the other direction doesn’t have any weight to 
spare (its crossing weight + waiting weight + our crossing weight + this car is too much). 

 

3. Read-Write Locks 
Part A: acquireAsReader 

Assume just two threads:  

• Thread 1 calls acquireAsReader and is swapped off after five of seven lines.  
• Thread 2 calls and progresses through all of acquireAsWriter.  
• Thread 1 progresses through rest of acquireAsReader.  

We have one reader and one writer, and that’s forbidden.  

Part B: acquireAsWriter 

If the writer doesn’t release stateLock before waiting for the number of readers to fall to 0, it 
blocks readers trying to release their locks from decrementing numReaders.  

Part C: release 

The implementation is such that the write state can only be Writing when there’s one write lock 
and zero read locks. When the write state is Writing, then only one thread could possibly be 
calling release, unless the class is being used improperly.  

Part D: Upgrade 

This question is open-ended and an opportunity to communicate advanced understanding of 
threading, race conditions, deadlock threat, and concurrency primitives, so a wide variety of 
answers would be accepted.  

One advantage: fewer mutexes and condition_variable_anys need to be waited on, so the 
chance that the threads trying to upgrade the lock are forced to yield the processor is much, much 
smaller.  

Another advantage: using a thread’s support for priorities, you can give threads that are trying to 
upgrade higher priority, so they get the processor before lower priority threads do.  

Implementation idea: change the acquireAsWriter to accept a bool to state whether it holds 
a read lock already.  
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Better implementation idea: update the rwlock to maintain a set of thread pointers / ids that hold 
a read lock, and if the thread trying to upgrade finds its thread id in the set, then it knows it’s 
upgrading.  

It can then wait until numReaders == numUpgraders instead of numReaders == 0.   

Couple this with higher thread priorities and you can ensure that exactly one upgrading thread 
succeeds while all others wait. It’s true that all of the other upgraders technically have a read lock, 
but they’re blocked inside acquireAsWriter, so they’re not actually reading whatever data 
structure is being accessed, so it’s okay.)  

 

4. Short Answer 
Part A: close-on-execvp 

The information must be stored in the descriptor table itself. If stored in the open file table entry, 
then dup2’ed descriptors (e.g. dup2(fds[1], STDOUT_FILENO) would also be auto-closed, 
since the duplicated descriptors would reference the same entry. 

Part B: vfork 

Because vfork doesn’t create a new address space, the parent needs to stand still until the child 
has either exited or been forced to create a new one via execvp. Otherwise, the parent might 
change variables the child is permitted to read, and that would introduce a data race.  

Part C: StanfordTube access patterns 

Possible answer:  

- Sequential reads and writes  
- Very large file sizes 
- Reads much more common than writes  

Part D: filesystem design 

Some possible answers: 

- Larger blocks would make sense since all files are large 
- Caching might make sense on a per-file basis, since there will be some videos accessed a 

lot, and the caching mechanism could try to identify these popular videos. 
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Part E: logging 

Possible answer: 

- Metadata and file data logging (takes up more space and slower, but helps minimize data 
loss) 

- No delayed writing, write immediately (slower, but minimizes data loss to disk and to log) 

 

5. Thread Dispatching and Scheduling 
Part A: Thread States 

Running to ready: time slice expires, thread needs to yield to another ready thread 

Ready to blocked: not possible – in order for a thread to become blocked, it must run some 
operation that causes it to be blocked 

Running to blocked: e.g. calls waitpid and child process we are waiting on is not done yet 

Blocked to running: e.g. child process we are waiting on finishes, and there is a core immediately 
available to run on 

Part B: Page fault cost 

Both. If the working sets of all the runnable threads fit in memory, then while one thread is waiting 
for a page fault another thread can execute, effectively hiding the cost of page faults. However, if 
the working sets do not fit in memory, then the system will quickly end up in a state where all 
threads are waiting for page faults; as soon as a thread resumes after a page fault, it will touch 
another page that is not in memory and generate another page fault to wait for. The more runnable 
threads there are, the worst things will get. 

Part C: clock modification 

Answer: this is a bad idea. This would result in FIFO replacement, whereas the normal clock 
algorithm provides an approximation to LRU.  

Part D: Mutex implementation 

No – the resulting implementation is not guaranteed to be FIFO and may allow multiple threads to 
acquire the lock simultaneously.  For instance, if thread A holds a lock and thread B is blocked 
waiting for that lock, when thread A unlocks, sets locked = 0 and unblocks B, you could have a 
scenario where another thread C gets to run and calls lock before thread B is woken up to acquire 
the lock.  B could then wake up later and also acquire the lock. 
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6. Virtual Memory 
Part A: Address Size 

False. The size of physical addresses is determined by the width of page table entries, so it can be 
either larger or smaller than virtual addresses. 

 

Part B: Offset size 

True. The offset is passed directly from the virtual address to the physical address without any 
mapping or modification, so its size cannot change. 

Part C: Clock dirty pages 

Possible benefit: we don’t need to wait for that dirty page to write to disk before finishing the clock 
algorithm, but we still write it to disk so that we can potentially kick it out next time when we need 
another page. 

 

Part D: clock hand speed 

Sweeping slowly means plenty of memory, not many page faults – good. 

Sweeping quickly means not enough memory, too many page faults – bad. 

Part E: Page Size 

Possible benefit: smaller page maps because memory is made up of fewer, larger pages. 

Possible drawback: increased internal fragmentation from unused space within a page if someone 
doesn’t need the entire page. 

Part F: TLB 

When context switching, we must mark all the entries in the TLB as invalid because the mappings 
will be different for the next process. 


