
CS 111 Final Review Session
Winter 2023

Briana Berger and Yashodhar Govil 

Slides by Briana Berger, Yashodhar Govil Parthiv Krishna



Key Topics

● Filesystems and Crash Recovery

● Multiprocessing and Pipes

● Multithreading and Synchronization

● Dispatching and Scheduling

● Virtual Memory and Paging

● Ethics



⚡ Lightning Recap ⚡ 
Filesystems n Multiprocessing
*Exam emphasizes knowledge from the later half of the class though; thus this 

isn’t comprehensive

https://emojipedia.org/high-voltage/#:~:text=Depicted%20as%20a%20jagged%20yellow,energy%20and%20signal%20attention%20online.
https://emojipedia.org/high-voltage/#:~:text=Depicted%20as%20a%20jagged%20yellow,energy%20and%20signal%20attention%20online.


Unix v6 Filesystem

● Stores inodes on disk together in the inode table for quick access. 

● An inode ("index node") is a grouping of data about a single file. It’s 

stored on disk, but we can read it into memory when the file is open

○ Each Unix v6 inode has space for 8 block numbers

● For "small" files/directories, i_addr stores up to 8 direct block 

numbers. 

● For "large" files/directories, i_addr's up to first seven entries store 

singly-indirect block numbers, and the eighth entry (if needed) 

stores a doubly-indirect block number.



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: performance, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to 

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints), 

multiple logs must be done asynchronously (soln: transactions), logs must be 

idempotent (doing multiple times has same effect as doing once)



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: performance, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to 

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints), 

multiple logs must be done asynchronously (soln: transactions), logs must be 

idempotent (doing multiple times has same effect as doing once)



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: dependency management, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to 

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints), 

multiple logs must be done asynchronously (soln: transactions), logs must be 

idempotent (doing multiple times has same effect as doing once)



3 Approaches to Crash Recovery

1. Consistency check on reboot (fsck)

a. No filesystem changes, run program on boot to repair whatever we can.

b. Downsides: Doesn’t prevent information loss & filesystem may still be unusable

2. Ordered Writes

a. We could prevent certain inconsistencies by making writes in a particular order.

b. Downsides: dependency management, leaks data

3. Write-Ahead Logging (“Journaling”)

a. log metadata (and optionally file data) operations before doing the operations to 

create a paper trail we can redo in case of a crash.

b. must be done synchronously (soln: delay writes), log gets long (soln: checkpoints), 

multiple logs might need some operations to be atomic (soln: transactions), logs 

must be idempotent (doing multiple times has same effect as doing once)



Multiprocessing (fork) vs. Multithreading (std::thread)

Concurrency within a single process using threads!



Multiprocessing (fork) vs. Multithreading (std::thread)

● Concurrency within a single process using threads.

● Processes: 

○ isolate virtual address spaces (✅: security, 🚩: harder to share)

○ run external programs easily (fork-exec) (✅)

○ harder to coordinate tasks in the same program (🚩)

● Threads: 

○ share virtual address space (🚩: security, ✅: easier to share) 

○ can't run external programs easily (🚩) 

○ easier to coordinate tasks within the same program (✅)



What questions do you have?



Multithreading and 
Synchronization
The Monitor Pattern: ThreadPipe



ThreadPipe

● Let’s implement a class called ThreadPipe

● Like a pipe, but between threads instead of processes

● void put(char c);

○ Puts a character in the pipe (or blocks if it’s full, just like write to a 

pipe)

● char get(); 

○ Gets a character from the pipe (or blocks if it’s empty, just like read 

from a pipe)



ThreadPipe: Baseline Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

}

char ThreadPipe::get() {
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
return c;

}



ThreadPipe: Baseline Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

}

char ThreadPipe::get() {
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
return c;

}

Are there any race conditions possible? If so, how can we fix it?



ThreadPipe: Locked Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}



ThreadPipe: Locked Implementation

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}What if the ThreadPipe is full/empty?



ThreadPipe: Busywaiting

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

lock.unlock();
lock.lock();

}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
while (count == 0) {

lock.unlock();
lock.lock();

}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}



ThreadPipe: Busywaiting

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

lock.unlock();
lock.lock();

}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE) {

nextPut = 0;
}

lock.unlock();
}

char Pipe::get() {
lock.lock();
while (count == 0) {

lock.unlock();
lock.lock();

}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE) {

nextGet = 0;
}
lock.unlock();
return c;

}
How can we avoid busywaiting?



Condition Variables

1. Identify a single kind of event that we need to wait / notify for

2. Ensure there is proper state to check if the event has happened

3. Create a condition variable and share it among all threads either waiting 
for that event to happen or triggering that event

4. Identify who will notify that this happens, and have them notify via the 
condition variable

5. Identify who will wait for this to happen, and have them wait via the 
condition variable



ThreadPipe: Condition Variables

class ThreadPipe {
ThreadPipe() {}
void put(char c);
char get();

std::mutex lock;
std::condition_variable_any added;
std::condition_variable_any removed;

char buffer[SIZE];
int count = 0;
int nextPut = 0;
int nextGet = 0;

};

void ThreadPipe::put(char c) {
lock.lock();
while (count == SIZE) {

removed.wait(lock);
}
count++;
buffer[nextPut] = c;
nextPut++;
if (nextPut == SIZE)

nextPut = 0;
if (count == 1)

added.notify_all();
lock.unlock();

}

char Pipe::get() {
lock.lock();
while (count == 0) {

added.wait(lock);
}
count--;
char c = buffer[nextGet];
nextGet++;
if (nextGet == SIZE)

nextGet = 0;

if (count == SIZE-1)
removed.notify_all();

lock.unlock();
return c;

}



What questions do you have about 
ThreadPipe?



Dispatching and Scheduling



110 Practice Final 3: Question 4e

● Don’t want to run threads that can’t do any useful work right 

now (blocked).

● Ensures that we only run threads that can do something.

https://web.stanford.edu/class/cs110/assessments/practice/cs110-practice-final-3.pdf


popped from 
ready queue

e.g. lock 
unlocked, disk 
i/o completed

e.g. lock already locked, disk read

e.g. lock unlocked, disk i/o completed, 
AND core is available (skip ready 
queue)

Blocked Running

Ready

e.g. timeslice 
ran out



What questions do you have about 
Dispatching and Scheduling?



Virtual Memory
Different Approaches: Pros and Cons



Load Time Relocation

● Pros

○ Fast once loading is done 

(no address translation 

needed)

● Cons

○ Must decide process memory space ahead of 
time

○ Cannot grow when adjacent regions are used

○ External fragmentation

○ Programs are compiled assuming their memory 
space starts at 0, so we would need to rewrite 
the program’s pointers when we load

■ Can’t move the program in memory after 
loading unless we somehow intercept and 
update all pointers



Load Time Relocation

● Pros

○ Fast once loading is done 

(no address translation 

needed)

● Cons

○ Must decide process memory space ahead of 
time

○ Cannot grow when adjacent regions are used

○ External fragmentation

○ Programs are compiled assuming their memory 
space starts at 0, so we would need to rewrite 
the program’s pointers when we load

■ Can’t move the program in memory after 
loading unless we somehow intercept and 
update all pointers



Base and Bound

● Pros

○ Simple

○ Quick address translation

○ Very little space needed to 

track info about each 

process’s memory

● Cons

○ All memory allocated to a process has to be 

contiguous virtual addresses

■ Stack is often far from heap in virtual address 

space

○ Can only grow upwards



Base and Bound

● Pros

○ Simple

○ Quick address translation

○ Very little space needed to 

track info about each 

process’s memory

● Cons

○ All memory allocated to a process has to be 

contiguous virtual addresses

■ Stack is often far from heap in virtual address 

space

○ Can only grow upwards



Multiple Segments

● Pros

○ Not as simple as Base + Bound, but still 
very simple

○ Still pretty quick address translation

○ Still relatively little space needed 
per-process for VM info

○ Can allocate different discontinuous 
areas of VM with different protections

■ Code, Heap, Stack

● Cons

○ Segments are of different 
sizes, so we will tend 
towards external 
fragmentation

○ Generally, not many 
segments



Multiple Segments

● Pros

○ Not as simple as Base + Bound, but still 
very simple

○ Still pretty quick address translation

○ Still relatively little space needed 
per-process for VM info

○ Can allocate different discontinuous 
areas of VM with different protections

■ Code, Data, Stack

● Cons

○ Segments are of different 
sizes, so we will tend 
towards external 
fragmentation

○ Generally, not many 
segments



Paging

● Pros

○ Fixed size pages: no external 

fragmentation

○ Can dynamically resize memory 

allocated to a process

○ Can grow in either direction

○ Can assign different permissions 

to different pages

■ Code, Heap, Stack

● Cons

○ Internal fragmentation within pages. You 
can only get memory in 4KB chunks.

○ Relatively slower/more complicated 
address translation, especially with 
multi-level page tables

■ Can be accelerated with dedicated 
hardware: memory management 
unit (MMU)



Paging

● Pros

○ Fixed size pages: no external 

fragmentation

○ Can dynamically resize memory 

allocated to a process

○ Can grow in either direction

○ Can assign different permissions 

to different pages

■ Code, Data, Stack

● Cons

○ Internal fragmentation within pages. You 
can only get memory in 4KB chunks.

○ Relatively slower/more complicated 
address translation, especially with 
multi-level page tables

■ Can be accelerated with dedicated 
hardware like memory management 
unit (MMU)



What questions do you have about 
Virtual Memory?



Ethics



Agency and Trust

● Trusting software is extending agency
○ “when we trust, we try to make something a part of our agency, and we are betrayed 

when our part lets us down. To unquestioningly trust something is to let it in—to 

attempt to bring it inside one’s practical functioning.”

○ Example: glucose monitoring

● Agential gullibility
○ Trusting more than warranted

○ Difficult to judge how trust is warranted given how quickly software changes, hard to 

inspect

○ Example: glucose monitoring issues w/ Android update



Agency and Trust

● Trusting software is extending agency
○ “when we trust, we try to make something a part of our agency, and we are betrayed 

when our part lets us down. To unquestioningly trust something is to let it in—to 

attempt to bring it inside one’s practical functioning.”

○ Example: glucose monitoring

● Agential gullibility
○ Trusting more than warranted

○ Difficult to judge how trust is warranted given how quickly software changes, hard to 

inspect

○ Example: glucose monitoring issues w/ Android update



Agency and Trust

● Trusting software is extending agency
○ “when we trust, we try to make something a part of our agency, and we are betrayed 

when our part lets us down. To unquestioningly trust something is to let it in—to 

attempt to bring it inside one’s practical functioning.”

○ Example: glucose monitoring

● Agential gullibility
○ Trusting more than warranted

○ Difficult to judge how trust is warranted given how quickly software changes, hard to 

inspect

○ Example: glucose monitoring issues w/ Android update



Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g. using unknown third party library b/c deadline nearing 

2. Inference: reputation is based on past performance 
a. Log of past actions

b. Trust in brands

c. Trust in prior versions of software

3. Substitution: structural arrangements that partly substitute need for trust 
a. Often involves separation of code, responsibilities 

b. E.g. user permissions of file system, separating self-driving functionality of car from 

infotainment



Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g. using unknown third party library b/c deadline nearing 

2. Inference: reputation is based on past performance 
a. Log of past actions

b. Trust in brands

c. Trust in prior versions of software

3. Substitution: structural arrangements that partly substitute need for trust 
a. Often involves separation of code, responsibilities 

b. E.g. user permissions of file system, separating self-driving functionality of car from 

infotainment



Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g. using unknown third party library b/c deadline nearing 

2. Inference: reputation is based on past performance 
a. Log of past actions

b. Trust in brands

c. Trust in prior versions of software

3. Substitution: structural arrangements that partly substitute need for trust 
a. Often involves separation of code, responsibilities 

b. E.g. user permissions of file system, separating self-driving functionality of car from 

infotainment



Three Paths to Trust: Trust by —

1. Assumption: trust absent any cluses to warrant it.
a. E.g. using unknown third party library b/c deadline nearing 

2. Inference: reputation is based on past performance 
a. Log of past actions

b. Trust in brands

c. Trust in prior versions of software

3. Substitution: structural arrangements that partly substitute need for trust 
a. Often involves separation of code, responsibilities 

b. E.g. user permissions of file system, separating self-driving functionality of car from 

infotainment



Trust Examples

● Meltdown - hardware-level vulnerability that overcomes memory isolation 

allowing any user process to read the machine’s entire kernel memory
○ Hardware fixes in later processors, patches in some earlier ones (though concerns about 

performance penalties introduced), patched in OSes

● Minimum Support Periods - Duration of software and security support
○ No requirement for operating system makers to provide this!

■ What are some arguments in favor? against?

● Therac-25 - A lethal race condition in the software of a medical radiation device

○ Where was the agential gullibility here? How could the engineers substituted that need for trust?



Trust Examples

● Meltdown - hardware-level vulnerability that overcomes memory isolation 

allowing any user process to read the machine’s entire kernel memory
○ Hardware fixes in later processors, patches in some earlier ones (though concerns about 

performance penalties introduced), patched in OSes

● Minimum Support Periods - Duration of software and security support
○ No requirement for operating system makers to provide this!

■ What are some arguments in favor? against?

● Therac-25 - A lethal race condition in the software of a medical radiation device

○ Where was the agential gullibility here? How could the engineers substituted that need for trust?



Trust Examples

● Meltdown - hardware-level vulnerability that overcomes memory isolation 

allowing any user process to read the machine’s entire kernel memory
○ Hardware fixes in later processors, patches in some earlier ones (though concerns about 

performance penalties introduced), patched in OSes

● Minimum Support Periods - Duration of software and security support
○ No requirement for operating system makers to provide this!

■ What are some arguments in favor? against?

● Therac-25 - A lethal race condition in the software of a medical radiation device

○ Where was the agential gullibility here? How could the engineers substituted that need for trust?



Thank you for all your hard work. 
Best of luck on the midterm!!!
What questions do you have?


