

CS110 Practice Midterm 3

Problem 1: duet [10 points]

Leverage your pipe, fork, dup2, and execvp skills to implement duet, which has the
following prototype:

static void duet(int incoming, char *one[], char *two[], int outgoing);

incoming is a valid, read-oriented file descriptor, outgoing is a valid, write-oriented file
descriptor, and one and two are well-formed, NULL-terminated argument vectors. duet
launches two child processes, the first of which executes the program identified in one, the
second of which executes the program identified in two.

The first process’s standard input is rewired to draw bytes from incoming, and its standard
output is rewired to feed bytes to the standard input of the second process, which itself directs its
standard output to whatever resource is bound to outgoing. The function waits for the two
processes (and only those two processes) to run to completion before returning.

Use this and the next page to present your implementation of duet. You may assume that all
system calls succeed, and that the executables identified by one and two always run to
completion without crashing. You should close all unused file descriptors (including incoming
and outgoing once you’ve leveraged their resources).

static void duet(int incoming, char *one[], char *two[], int outgoing) {

Problem 2: Short Answer Questions

Unless otherwise noted, your answers to the following questions should be 50 words or fewer.
Responses longer than 50 words will receive 0 points. You needn’t write in complete sentences
provided it’s clear what you’re saying. Full credit will only be given to the best of responses.
Just because everything you write is true doesn’t mean you get all the points.

a. [2 points] The dup2 system call accepts two presumably valid file descriptors, detaches the

second of the two from its file session, and then attaches it to whatever the first descriptor is
attached to. Briefly outline what happens to the relevant file entry table and vnode table
entries as a result of dup2 being called.

b. [2 points] Explain what happens when you type cd ../.. at the shell prompt. Frame your
explanation in terms of your Assignment 1 file system and the fact that the inode number of
the current working directory is the only relevant global variable maintained by your shell.

Chris Gregg

Chris Gregg
2

Nick Troccoli

 2

c. [2 points] Consider the prototype for the flock system call, which is as follows:

 int flock(int fd, int op);

flock can be used to gain exclusive access to the file session bound to fd. The op
parameter can (for the purposes of this problem) be one of two constants, and those
constants are:

Ø LOCK_EX, which is a request to grab exclusive access to a file session that should be
respected by all other processes. If the resource isn’t locked at the time of the call,
then it is locked and flock returns right away. If the resource is locked, then the
process blocks within the flock call until the lock is lifted by another process.

Ø LOCK_UN, which releases the lock held on a resource (or is a no-op if the lock wasn’t
held in the first place).

• [1 point, 25 words] Explain why information about the locked state of a file session needs

to be stored in a file entry table instead of a file descriptor table.

• [1 point, 25 words] Explain why descriptors created using dup might reference locked
file sessions, but descriptors created using open initially reference a file session that is
guaranteed to be unlocked.

d. [2 points] Typically, each page of a process’s virtual address space maps to a page in
physical memory that no other virtual address space maps to. However, when two processes
are running the same executable (e.g. you have two instances of emacs running,) some
pages within each of the two processes’ virtual address spaces can map to the same exact
pages in physical memory. Identify one segment within the processes’ virtual address
spaces that could be backed by the same pages of physical memory, and briefly explain why
it’s possible.

e. [2 points] Your assign1 file system relied on direct indexing for small files and singly and

doubly indirect indexing for large files. In the name of code uniformity, you could have just
represented all files, large and small, using doubly indirect indexing. Briefly describe the
primary advantage (other than uniformity of implementation) and primary disadvantage of
relying on doubly indirect indexing for all file sizes.

f. [2 points] Recall that the stack frames for system calls are laid out in a different segment of

memory than the stack frames of user functions. How are the parameters passed to the
system calls received when invoked from user functions? And how is the process informed
that all system call values have been placed and that it’s time to execute?

 3

g. [2 points] While implementing the farm program for assign2, you were expected to
implement a getAvailableWorker function to effectively block farm until at least one
worker was available. My own getAvailableWorker relied on this helper function:

static sigset_t waitForAvailableWorker() {
 sigset_t existing, additions;
 sigemptyset(&additions);
 sigaddset(&additions, SIGCHLD);
 sigprocmask(SIG_BLOCK, &additions, &existing);
 while (numWorkersAvailable == 0) sigsuspend(&existing);
 return existing;
}

The first quarter I used this assignment, a student asked if one could just use the pause
function instead, as with:

static sigset_t waitForAvailableWorker() {
 sigset_t mask;
 sigemptyset(&mask);
 sigaddset(&mask, SIGCHLD);
 sigprocmask(SIG_BLOCK, &mask, NULL);
 while (numWorkersAvailable == 0) {
 sigprocmask(SIG_UNBLOCK, &mask, NULL);
 pause();
 sigprocmask(SIG_BLOCK, &mask, NULL);
 }
}

The zero-argument pause function doesn’t alter signal masks like sigsuspend does; it
simply halts execution until the process receives any signal whatsoever and any installed
signal handler has fully executed. This is conceptually simpler and more easily explained
than the version that relies on sigsuspend, but it’s flawed in a way my solution is not.
Describe the problem and why it’s there.

 4

h. [2 points] My own farm solution included this implementation for closeAllWorkers,
which you can assume is correct:

static void closeAllWorkers() {
 for (size_t i = 0; i < workers.size(); i++) {
 getAvailableWorker();
 }

 signal(SIGCHLD, SIG_DFL);
 for (size_t i = 0; i < workers.size(); i++) {
 close(workers[i].sp.supplyfd);
 kill(workers[i].sp.pid, SIGCONT);
 }

 for (size_t i = 0; i < workers.size(); i++) {
 waitpid(workers[i].sp.pid, NULL, 0);
 }
}

• [1 point, 25 words] Could I have exchanged the close and kill calls within the

second for loop without impacting a worker’s ability to exit? Justify your answer.

• [1 point, 25 words] Assume that I called waitpid using WUNTRACED instead of 0.
Would the program have behaved any differently? Justify your answer.

i. [2 points] Your stsh supports the slay builtin, which was used to terminate a single
process, even if the process is stopped at the time it is slayed. You were told to terminate
the process using SIGKILL instead of SIGINT, because SIGINT won’t terminate a stopped
process until it is restarted. Why does a stopped process need to be restarted before a tabled
SIGINT can terminate it?

j. [2 points] When establishing a new process group for a pipeline of two or more commands
(as with echo "abcdefgh" | ./conduit --count 4), your stsh implementation
needs to call setpgid in both the parent and in each of the children ("in order to avoid
some race conditions", as the handout stated it). Describe the race condition that could
cause problems if the parent didn’t call setpgid and instead just relied on each of the
children to call it.

