
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 10
Pipes

😷 masks strongly
recommended

2

Topic 2: Multiprocessing - How
can our program create and
interact with other programs?
How does the operating system
manage user programs?

3

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Lecture 9 Today / Lecture 11

assign3: implement your own shell!

4

Learning Goals
• Get more practice with using fork() and execvp
• Learn about pipe to create and manipulate file descriptors
• Understand how file descriptors are duplicated across processes

5

Plan For Today
• Recap and continuing: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

6

Plan For Today
• Recap and continuing: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

7

waitpid()
A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on, or -1 to wait on any of our children
• status: where to put info about the child's termination (or NULL)
• options: optional flags to customize behavior (always 0 for now)

The function returns when the specified child process exits
• Returns the PID of the child that exited, or -1 on error (e.g. no child to wait on)
• If the child process has already exited, this returns immediately - otherwise, it blocks
• It's important to wait on all children to clean up system resources

8

execvp()
The most common use for fork is not to spawn multiple processes to split up
work, but instead to run a completely separate program under your control and
communicate with it.
• This is what a shell is; it is a program that prompts you for commands, and it

executes those commands in separate processes.

9

execvp()
execvp is a function that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at the given path, completely cannibalizing the current process.
• If successful, execvp never returns in the calling process
• If unsuccessful, execvp returns -1

To run another executable, we must specify the (NULL-terminated) arguments to be
passed into its main function, via the argv parameter.
• For our programs, path and argv[0] will be the same

execvp has many variants (see man execvp) but we’ll just be using execvp.

10

execvp()
// execvp-demo.c
int main(int argc, char *argv[]) {

printf("Hello, world!\n");
char *args[] = {"/bin/ls", "-l", "/usr/class/cs111/lecture-code",

NULL};
execvp(args[0], args);
printf("This only prints if an error occurred.\n");
return 0;

}

$./execvp-demo
Hello, world!
total 4
drwx------ 2 troccoli operator 2048 Oct 9 16:21 lect5
drwx------ 2 troccoli operator 2048 Oct 13 22:19 lect9

11

Implementing a Shell
How is execvp useful?
• This is the way that we can run other programs
• However, we often don’t want to cannibalize the current process
• Instead: we will usually fork off a child process and call execvp there. The child

process will be consumed, but that’s ok
• Key idea: the process is still the child process, and the parent can still wait on

it. It’s just running another program.

12

Implementing a Shell
A shell is essentially a program that repeats asking the user for a command and
running that command

How do we run a command entered by the user?
1. Call fork to create a child process
2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid

For assign3, you’ll use this pattern to build your own shell, stsh ("Stanford shell")
with various functionality of real Unix shells.

13

Demo: first-shell-soln.cc

14

Plan For Today
• Recap: waitpid and execvp
• Demo: our first shell
• Pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

15

Is there a way that the
parent and child processes

can communicate?
(why is this useful? In a shell, we can use the pipe “|” character to

feed the output of one command as the input of the next command.)

16

Pipes
How can we let two processes send arbitrary data back and forth?
• Idea: Create a shared file that one process could write to, and another process

could read from?
• Problem: we don't want to clutter the filesystem with files every time two

processes want to communicate.
• Solution: have the operating system set up an “imaginary shared file” for us.

• It will give us two new file descriptors - one for writing, another for reading.
• If someone writes data to the write FD, it can be read from the read FD.
• It's not actually a physical file on disk - we are just using files as an abstraction. The OS

maintains this pretend file for us in memory, but it appears to us just like a shared file.

• Core Unix principle: modeling things as “files”

17

pipe()
int pipe(int fds[]);

The pipe system call populates the 2-element array fds with two file descriptors
such that everything written to fds[1] can be read from fds[0]. Returns 0 on
success, or -1 on error.
Tip: you learn to read before you learn to write (read = fds[0], write = fds[1]).

18

pipe()
static const char * kPipeMessage = "this message is coming via a pipe.";
int main(int argc, char *argv[]) {

int fds[2];
pipe(fds);

// Write message to pipe (assuming all bytes written immediately)
write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
close(fds[1]);

// Read message from pipe
char receivedMessage[strlen(kPipeMessage) + 1];
read(fds[0], receivedMessage, sizeof(receivedMessage));
close(fds[0]);
printf("Message read: %s\n", receivedMessage);

return 0;
}

$./pipe-demo
Message read: this message is coming via a pipe.

19

pipe()
The most common use for pipe is not to send and receive data within a single
process, but to share a pipe between two processes, where one reads and the
other writes. How is this possible?

Key idea: a pipe can facilitate parent-child communication because file
descriptors are duplicated on fork(). Thus, a pipe created prior to fork() will
also be accessible in the child!

How does this file descriptor duplication work?

20

File Descriptor Table
The OS maintains a “Process Control Block” for each process containing info
about it. This includes a process’s file descriptor table, an array of info about
open files/resources for this process.
Key idea: a file descriptor is an index into that process’s file descriptor table!

Process Control Block

0 1 2 3 4 …

21

File Descriptor Table
Key idea: a file descriptor is an index into that process’s file descriptor table.
• An entry in the file descriptor table is really a pointer to an entry in another

table, the open file table.
• The open file table is one array of information about open files/resources

across all processes.

22

Open File Table
• Calling open creates a new open file table entry, and a new file descriptor

index points to it.
• Calling pipe creates 2 new open file table entries, and 2 new file descriptor

indexes point to them.
• Calling fork means the OS creates a new Process Control Block with a copy of

parent’s FD table; so, all file descriptor indexes point to the same place!

23

Open File Table
• Each open file table entry keeps a reference count, a count of the number of

file descriptor table entries pointing to it.
• This ref count increases whenever a new file descriptor index points to it.
• When we call close in our program, file descriptor index no longer points to

open file table entry, open file table entry’s ref count decremented.
• When open file table entry’s ref count == 0, it’s deleted

24

Practice: Reference Count
If a process opens a file, and then spawns a child process, what will the
reference count be for the corresponding open file table entry?
2.
This explains why we must close this file in both the parent and child.

int fd = open(…);
pid_t pidOrZero = fork();
if (pidOrZero == 0) {

…
close(fd);

} else {
…
close(fd);

}

25

pipe()
pipe can allow processes to communicate!
• When fork is called, everything is cloned – even the file descriptors, which are

replicated in the child process. This means if the parent creates a pipe and
then calls fork(), both processes can use the pipe!
• E.g. the parent can write to the "write" end and the child can read from the

"read" end (or vice versa)
• Because they're file descriptors, there's no global name for the pipe (another

process can't "connect" to the pipe).
• Each pipe is uni-directional (one end is read, the other write)
• Key Idea: read() blocks until the bytes are available or there is no more to read

(e.g. end of file or pipe write end closed). So if one process is reading, it will
wait until the other writes.

35

Recap
• Recap: waitpid and execvp
• Demo: our first shell
• Pipes

Next time: more usage of pipes

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

Lecture 10 takeaway: shells
work by spawning child
processes that call execvp.
Pipes are sets of file descriptors
that let us read/write. We can
share pipes with child processes
to send arbitrary data back and
forth.

