
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 13
Race Conditions and Locks

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 5.2-5.4

and Section 6.5

😷 masks strongly
recommended

2

Announcements
• Updates to lecture attendance policy – now using lecture checkin quizzes
• Midterm details posted (paper exam, review materials coming soon!)
• New Fri. 3:30-4:20PM section added this week, feel free to join!
• Assign3: check out YEAH Hours materials, particularly for 2-process pipelines!

3

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

4

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

Last lecture This Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

5

Learning Goals
• Discover some of the pitfalls of threads sharing the same virtual address space
• Understand how to identify critical sections and fix race conditions/deadlock
• Learn how locks can help us limit access to shared resources

6

Plan For Today
• Recap: Threads
• Threads Share Memory
• Critical Sections
• Mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

7

Plan For Today
• Recap: Threads
• Threads Share Memory
• Critical Sections
• Mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

8

From Processes to Threads
We can have concurrency within a single process using threads: independent
execution sequences within a single process.
• Threads let us run multiple functions in our program concurrently (e.g.

parallelize computation)
• Each thread operates within the same process, so they share a virtual address

space (!) (globals, heap, pass by reference, etc.)

9

C++ Thread
A thread object can be spawned to run the specified function with the given
arguments.

thread myThread(myFunc, arg1, arg2, ...);

• myFunc: the function the thread should execute asynchronously
• args: a list of arguments (any length, or none) to pass to the function
• myFunc’s function's return value is ignored (use pass by reference instead)
• Once initialized with this constructor, the thread may execute at any time!

10

C++ Thread
To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);
...
// Wait for thread to finish (blocks)
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];
...
for (int i = 0; i < 5; i++) {

friends[i].join();
}

11

Race Conditions
• Like with processes, threads can execute in unpredictable orderings.
• A race condition is an unpredictable ordering of events where some orderings

may cause undesired behavior.
• An example where race conditions can occur is

with operator<<. e.g. cout statements could get interleaved!
• To avoid this, use oslock and osunlock (custom CS111 functions - #include

"ostreamlock.h") around streams. They ensure at most one thread has
permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;

12

Plan For Today
• Recap: Threads
• Threads Share Memory
• Critical Sections
• Mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

13

Threads Share Memory
Unlike parent/child processes, threads execute in the same virtual address space
• This means we can e.g. pass parameters by reference and have all threads

access/modify them!
• To pass by reference with thread(), we must use the special ref() function

around any reference parameters when we create a thread:

static void greeting(size_t& i) {
...

}

for (size_t i = 0; i < kNumFriends; i++) {
friends[i] = thread(greeting, ref(i));

}
friends.cc

14

Threads Share Memory
• Here, all threads are referencing the same copy of i, which is updated in the for

loop. It could be that by the time the threads access it, it’s already been
incremented all the way to 6!
• While in this example we can just pass by copy, we must keep an eye out for

the consequences of shared memory.

Let’s see another example of the potential for race condition problems.

15

Parallelizing Tasks
Threads allow a process to parallelize a program across multiple cores.
• Consider a scenario where we want to sell 250 tickets and have 10 cores
• Simulation: let each thread help sell tickets until none are left

16

Parallelizing Tasks
Simulation: let each thread help sell the 250 tickets until none are left.

const size_t kNumTicketAgents = 10;
int main(int argc, const char *argv[]) {

thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets));

}

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i].join();

}
cout << "Ticket selling done!" << endl;
return 0;

}

17

Demo: confused-ticket-
agents.cc

18

Overselling Tickets

What might have caused us to oversell tickets?

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

19

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1

20

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets
to sell? Yep!

21

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets
to sell? Yep!

22

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets
to sell? Yep!z

z
z

23

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
Are there tickets
to sell? Yep!z

z
z

24

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
z
z
z Are there tickets

to sell? Yep!

25

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 1
z
z
z Are there tickets

to sell? Yep!

26

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 0
Let’s sell a ticket!

z
z
z

z
z
z

27

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = 0
Let’s sell a ticket!

z
z
z

z
z
z

28

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number>

Let’s sell a ticket!z
z
z

z
z
z

29

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number>

Let’s sell a ticket!z
z
z

z
z
z

30

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number - 1>
z
z
z

Let’s sell a ticket!

31

z
z
z

Race Condition: Overselling Tickets
static void sellTickets(size_t id, size_t& remainingTickets) {

while (remainingTickets > 0) {
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

Thread #1 Thread #2 Thread #3

remainingTickets = <really large number - 1>
z
z
z

Let’s sell a ticket!

32

Race Condition: Overselling Tickets
There is a race condition here! Threads could interrupt each other in between
checking for remaining tickets and selling them.

• If thread A sees tickets remaining and commits to selling a ticket, another
thread B could come in and sell that same ticket before thread A does.
• This can happen because this portion of code isn’t atomic.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
...

}
...

}

33

Race Condition: Overselling Tickets
If thread A sees tickets remaining and commits to selling a ticket, another thread
B could come in and sell that same ticket before thread A does.

• Atomicity: externally, the code has either executed or not; external observers
do not see any intermediate states mid-execution.
• We want a thread to do the entire check-and-sell operation uninterrupted by

other threads.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
...

}
...

}

34

Atomicity
• C++ statements aren’t inherently atomic.
• Even single C++ statements like remainingTickets-- take multiple operations

and could be interrupted in the middle. (multiple assembly instructions to get
value, decrement value, and save updated value).

• Even if we altered the code as below, it still wouldn’t fix the problem:

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets-- > 0) {

sleep_for(500); // simulate "selling a ticket"
...

}

35

It would be nice if we could
allow only one thread at a
time to execute a region of

code.

36

Plan For Today
• Recap: Threads
• Threads Share Memory
• Critical Sections
• Mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

37

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

38

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (remainingTickets > 0) {

sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

39

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

What should we make a critical section? Key: keep them as small as possible to
protect performance.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (true) {

if (remainingTickets == 0) break;
sleep_for(500); // simulate "selling a ticket"
remainingTickets--;
cout << oslock << "Thread #" << id << " sold a ticket ("

<< remainingTickets << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

40

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (true) {

if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket - 1 << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

41

Critical Section
A critical section is a section of code that should be executed by only one thread
at a time.

static void sellTickets(size_t id, size_t& remainingTickets) {
while (true) {

🚦🚦🚦 // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket - 1 << " remain)." << endl << osunlock;
}
cout << oslock << "Thread #" << id
<< " sees no remaining tickets to sell and exits." << endl << osunlock;

}

42

Plan For Today
• Recap: Threads
• Threads Share Memory
• Critical Sections
• Mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

43

Mutexes
A mutex (”mutual exclusion”) is a variable type that lets us enforce this pattern
of only 1 thread having access to something.
• Also known as a lock (there are other types of locks as well)
• A way to add a constraint to your program: “only one thread may access or

execute this at a time”.
• Initially unlocked
• You make a mutex for each distinct thing you need to limit access to.
• Owned by one thread at a time
• You call lock() on the mutex to attempt to take the lock
• You call unlock() on the mutex when you are done to give the lock back

44

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

45

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

46

Mutexes
int main(int argc, const char *argv[]) {

thread ticketAgents[kNumTicketAgents];
size_t remainingTickets = 250;
mutex counterLock;

for (size_t i = 0; i < kNumTicketAgents; i++) {
ticketAgents[i] = thread(sellTickets, i, ref(remainingTickets),

ref(counterLock));
}
...

}

47

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

48

Mutexes
Step 3: Lock the mutex at the start of the critical section

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket - 1 << " remain)." << endl << osunlock;
}
...

49

Mutexes
When a thread calls lock():
• If the lock is unlocked: the thread now owns the lock and continues execution
• If the lock is locked: the thread blocks and waits until the lock is unlocked
• If multiple threads are waiting for a lock: they all wait until it's unlocked, one receives lock

(not necessarily one waiting longest)
static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) break;
size_t myTicket = remainingTickets;
remainingTickets--;
// once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket - 1 << " remain)." << endl << osunlock;
}
...

50

Mutexes
Step 4: Unlock the mutex at the end of the critical section
Calling unlock lets another waiting thread (if any) take ownership of the lock

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) {

counterLock.unlock(); // must unlock in all cases!
break;

size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
cout << oslock << "Thread #" << id << " sold a ticket ("

<< myTicket - 1 << " remain)." << endl << osunlock;
}

51

Stalled Ticket Agents

Make sure to trace each thread's possible paths of execution to ensure they
always give back shared resources like locks.

static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) {

counterLock.unlock(); // must give up lock before exiting
break;

}
size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
...

52

Mutex Uses
Other times you need a mutex:
• When there are multiple threads writing to a variable
• When there is a thread writing and one or more threads reading

Why do you not need a mutex when there are no writers (only readers)?

64

Recap
• Recap: Threads
• Threads share memory
• Critical Sections
• Mutexes

Next time: condition variables

cp -r /afs/ir/class/cs111/lecture-code/lect13 .

Lecture 13 takeaway: A mutex
(“lock”) can help us limit critical
sections to 1 thread at a time. A
thread can lock a mutex to take
ownership of it, and unlock it to
give it back. Locking a locked
mutex will block the thread until
the mutex is available. We must
watch out for race conditions!

