
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 14
Locks and Condition Variables

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 5.2-5.4

and Section 6.5

😷 masks strongly
recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

Lecture 12 Last Lecture This Lecture Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

4

Learning Goals
• Get more practice using mutexes to prevent race conditions
• Learn about ways to add constraints to our programs to prevent deadlock
• Learn how condition variables can let threads signal to each other and wait for

conditions to become true

5

Plan For Today
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

6

Plan For Today
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

7

Mutexes
A mutex (”mutual exclusion”) is a variable type that lets us enforce the pattern
of only 1 thread having access to something at a time.
• You make a mutex for each distinct thing you need to limit access to.
• You call lock() on the mutex to attempt to take the lock
• You call unlock() on the mutex when you are done to give the lock back

8

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

9

Ticket Agents
static void sellTickets(size_t id, size_t& remainingTickets, mutex&
counterLock) {

while (true) {
counterLock.lock(); // only 1 thread can proceed at a time
if (remainingTickets == 0) {

counterLock.unlock(); // must give up lock before exiting
break;

}
size_t myTicket = remainingTickets;
remainingTickets--;
counterLock.unlock(); // once thread passes here, another can go
sleep_for(500); // simulate "selling a ticket"
...

10

Plan For Today
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

11

Deadlock
Deadlock occurs when multiple threads are all blocked, waiting on a resource
owned by one of the other threads. None can make progress! Example:

E.g. if thread A executes 1 line, then thread B executes 1 line, deadlock!
One prevention technique - prevent circularities: all threads request resources in
the same order (e.g., always lock mutex1 before mutex2.)
Another – limit number of threads competing for a shared resource

Thread A Thread B
mutex1.lock();
mutex2.lock();
...

mutex2.lock();
mutex1.lock();
...

12

Plan For Today
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

13

Deadlock Example: Dining
Philosophers Simulation

• Five philosophers sit around a circular table, eating spaghetti
• There is one fork for each of them
• Each philosopher thinks, then eats, and repeats this three times for their

three daily meals.
• To eat, a philosopher must grab the fork on their left and the fork on their

right. Then they chow on spaghetti to nourish their big, philosophizing brain.
• When they're full, they put down the forks in the same order they picked them

up and return to thinking for a while.
• To think, a philosopher keeps to themselves for some amount of

time. Sometimes they think for a long time, and sometimes they barely think
at all.

14

Dining Philosophers

https://commons.wikimedia.org/wiki/File:An_illustration_of_the_dining_philosophers_problem.png

15

Dining Philosophers
Goal: we must encode resource constraints into our program.
Example: for a given fork, how many philosophers can use it at a time? One.
How can we encode this into our program? Make a mutex for each fork.

16

Dining Philosophers
static void philosopher(size_t id, mutex& left, mutex&
right) { ... }

int main(int argc, const char *argv[]) {
mutex forks[kNumForks];
thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i,
ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]));

}
for (thread& p: philosophers) p.join();
return 0;

}

17

Dining Philosophers

static void philosopher(size_t id, mutex& left, mutex&
right) {

for (size_t i = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right);

}
}

A philosopher thinks and eats, and repeats this 3 times.

18

Dining Philosophers

static void think(size_t id) {
cout << oslock << id << " starts thinking."

<< endl << osunlock;
sleep_for(getThinkTime());
cout << oslock << id << " all done thinking. "

<< endl << osunlock;
}

think is modeled as sleeping the thread for some amount of time.

19

Dining Philosophers

static void eat(size_t id, mutex& left, mutex& right) {
left.lock();
right.lock();
cout << oslock << id << " starts eating om nom nom

nom." << endl << osunlock;
sleep_for(getEatTime());
cout << oslock << id << " all done eating." << endl

<< osunlock;
left.unlock();
right.unlock();

}

eat is modeled as grabbing the two forks, sleeping for some amount of time,
and putting the forks down.

Spoiler: there is a race condition here that
leads to deadlock – deadlock occurs when
multiple threads are all blocked, waiting on a
resource owned by one of the other blocked
threads. When could this happen?

20

Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock! All philosophers will wait on their right fork, which will never

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and

have no concurrency issues. Let’s try it!

dining-philosophers-with-deadlock.cc

21

Food For Thought
What if: all philosophers grab their left fork and then go off the CPU?
• Deadlock! All philosophers will wait on their right fork, which will never

become available
• Testing our hypothesis: insert a sleep_for call in between grabbing the two

forks
• We should be able to insert a sleep_for call anywhere in a thread routine and

have no concurrency issues. Let’s try it!
• We (incorrectly) assumed that at least one philosopher is always able to pick

up both of their forks. How can we fix this?

dining-philosophers-with-deadlock.cc

22

Race Conditions and Deadlock
In multithreaded programs, we need to ensure that:

there are never race conditions
• we can generally solve race conditions with mutexes. Use them to mark the

boundaries of critical sections to limit them to 1 thread at a time.

there's zero chance of deadlock (otherwise some or all threads are starved)
• we can solve deadlock by requesting resources in the same order and by

limiting the number of threads competing for a shared resource.

23

Plan For Today
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

24

Encoding Resource Constraints
Goal: we must encode resource constraints into our program.
Example: how many philosophers can try to eat at the same time?
• Alternatively: how many philosophers can eat at the same time? Two.
• Why might the first one be better? Imposes less bottlenecking while still

solving the issue.

How can we encode this into our program?
Have a counter of “permits”. Initially 4. A philosopher must have a permit
(decrement counter or wait) to try to eat. Once done eating, a philosopher
returns its permit (increment counter).

Four.

25

Tickets, Please…
int main(int argc, const char *argv[]) {

mutex forks[kNumForks];

size_t permits = kNumForks - 1;
mutex permitsLock;

thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i, ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsLock));

}
for (thread& p: philosophers) p.join();
return 0;

}

26

Tickets, Please…

static void philosopher(size_t id, mutex& left, mutex&
right, size_t& permits, mutex& permitsLock) {

for (size_t i = 0; i < kNumMeals; i++) {
think(id);
eat(id, left, right, permits, permitsLock);

}
}

A philosopher thinks and eats, and repeats this 3 times.

27

Tickets, Please…
static void eat(size_t id, mutex& left, mutex& right,
size_t& permits, mutex& permitsLock) {

waitForPermission(permits, permitsLock);
left.lock();
right.lock();
cout << oslock << id << " starts eating om nom nom

nom." << endl << osunlock;
sleep_for(getEatTime());
cout << oslock << id << " all done eating." << endl

<< osunlock;
grantPermission(permits, permitsLock);
left.unlock();
right.unlock();

}

28

grantPermission
To put a permit back, increment the counter by 1 and continue.

static void grantPermission(size_t& permits, mutex&
permitsLock) {

permitsLock.lock();
permits++;
permitsLock.unlock();

}

29

waitForPermission
• If there are permits, decrement the counter by 1 and continue
• If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {
while (true) {
permitsLock.lock();
if (permits > 0) break;
permitsLock.unlock();
// wait a little while (how??)

}
permits--;
permitsLock.unlock();

}

30

waitForPermission
• If there are permits, decrement the counter by 1 and continue
• If there aren’t permits, wait for a permit, then decrement by 1 and continue

static void waitForPermission(size_t& permits, mutex&
permitsLock) {
while (true) {
permitsLock.lock();
if (permits > 0) break;
permitsLock.unlock();
sleep(??);

}
permits--;
permitsLock.unlock();

}

This is called busy
waiting (bad). We are
unnecessarily and arbitrarily
using CPU time to check
when a permit is available.

31

It would be nice if someone
could let us know when
they return their permit.
Then, we can sleep until

this happens.

32

Plan For Today
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

33

Condition Variables
A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.
• You make one for each distinct event you need to wait / notify for.
• We can call wait on the condition variable to sleep until another thread signals

this condition variable.
• You call notify_all on the condition variable to send a notification to all waiting

threads and wake them up.

34

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

35

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

The event here is ”some permits are again available”.

36

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

We can check whether there are permits now
available by checking the permits count.

37

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

38

Condition Variables
int main(int argc, const char *argv[]) {

mutex forks[kNumForks];
size_t permits = kNumForks - 1;
mutex permitsLock;
condition_variable_any permitsCV;

thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i, ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsCV),
ref(permitsLock));

}
for (thread& p: philosophers) p.join();
return 0;

}

39

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

When someone returns a permit and there were
no permits available previously, notify all.

40

grantPermission
We must notify all once permits have become available again to wake up waiting
threads.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
permits++;
if (permits == 1) permitsCV.notify_all();
permitsLock.unlock();

}

41

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

If we need a permit but there are none available, wait.

42

waitForPermission
If no permits are available, we must wait until one becomes available.
Key Idea: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

75

Recap
• Recap: mutexes
• Deadlock
• Dining Philosophers
• Encoding resource constraints
• Condition Variables

Next time: multithreading patterns

cp -r /afs/ir/class/cs111/lecture-code/lect14 .

Lecture 14 takeaway:
Condition variables let us wait
on an event to occur and
notify other threads that an
event has occurred, all
without busy waiting.

