
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 15
Multithreading Patterns

😷 masks strongly
recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

Lecture 12 Lecture 13 Last Lecture This Lecture

assign4: implement several multithreaded programs while eliminating race conditions!

4

Learning Goals
• Get more practice using both mutexes and condition variables to implement

synchronization logic.
• Learn about the monitor pattern for designing multithreaded code in the

simplest way possible, using classes.

5

Plan For Today
• Recap and continuing: condition variables and dining philosophers
• Unique locks
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

6

Plan For Today
• Recap and continuing: condition variables and dining philosophers
• Unique locks
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

7

Condition Variables
A condition variable is a variable type that can be shared across threads and
used for one thread to notify other thread(s) when something happens.
Conversely, a thread can also use this to wait until it is notified by another
thread.
• You make one for each distinct event you need to wait / notify for.
• We can call wait on the condition variable to sleep until another thread signals

this condition variable.
• You call notify_all on the condition variable to send a notification to all waiting

threads and wake them up.
• Analogy: radio station – broadcast and tune in

8

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

9

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

The event here is ”some permits are again available”.

10

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

We can check whether there are permits now
available by checking the permits count.

11

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

12

Condition Variables
int main(int argc, const char *argv[]) {

mutex forks[kNumForks];
size_t permits = kNumForks - 1;
mutex permitsLock;
condition_variable_any permitsCV;

thread philosophers[kNumPhilosophers];
for (size_t i = 0; i < kNumPhilosophers; i++) {

philosophers[i] = thread(philosopher, i, ref(forks[i]),
ref(forks[(i + 1) % kNumPhilosophers]),
ref(permits), ref(permitsCV),
ref(permitsLock));

}
for (thread& p: philosophers) p.join();
return 0;

}

13

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

When someone returns a permit and there were
no permits available previously, notify all.

14

grantPermission
We must notify all once permits have become available again to wake up waiting
threads.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
permits++;
if (permits == 1) permitsCV.notify_all();
permitsLock.unlock();

}
When someone returns a permit and there were
no permits available previously (meaning some
people might be waiting), notify all.

15

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

If we need a permit but there are none available, wait.

16

waitForPermission (In progress)
If no permits are available, we must wait until one becomes available.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

if (permits == 0) {
permitsCV.wait(); // (note: not final form of wait)

}
permits--;

}

This is the idea for what we want to do – but there are
some additional cases/ quirks we need to account for.

17

waitForPermission (Final version)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
while (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

This is the final implementation with the final version of wait() that takes a
mutex parameter and which is called in a while loop. Let’s build our way to this
solution!

18

waitForPermission (In progress)
If no permits are available, we must wait until one becomes available.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

if (permits == 0) {
permitsCV.wait(); // (note: not final form of wait)

}
permits--;

}

Problem: we are accessing and modifying permits
without our lock! This causes race conditions.

19

waitForPermission (In progress)
If no permits are available, we must wait until one becomes available.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(); // (note: not final form of wait)
}
permits--;
permitsLock.unlock();

}
Problem: we have the lock when we call wait(). Wait
puts this thread to sleep and runs others, but no-one
will be able to return permits if we keep the lock.

20

grantPermission
Other threads need the lock in order to return permits:

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
permits++;
if (permits == 1) permitsCV.notify_all();
permitsLock.unlock();

}

21

waitForPermission (In progress)
If no permits are available, we must wait until one becomes available.
Solution: we must give up ownership of the lock when we wait, so that
someone else can put a permit back.

static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

22

Deadlock, Round 2
static void waitForPermission(size_t& permits, condition_variable_any&
permitsCV, mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Spoiler: there is a race condition that could lead to deadlock. What ordering of
events between threads could cause deadlock here? (Hint: if a thread isn’t
waiting, it won’t get a notification from another thread).

23

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 0

😋
🍝

PERMIT

24

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 0

🍝

PERMIT

z
z

z

25

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 0

🍝

PERMIT

I need to wait for
a permit in order
to eat.

z
z

z

26

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 0

🍝

PERMIT

I need to wait for
a permit in order
to eat.

z
z

z

27

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 0

😋
🍝

PERMIT

All done eating! I
will return my permit. z

z
z

28

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 1

🙂

All done eating! I
will return my permit. z

z
z

29

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 1

😮

Oh! I should notify
that there is a
permit now.

z
z

z

30

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 1

😲

“Attention waiting
threads, a permit is
available!”

z
z

z

31

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 1

z
z

z

32

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #2

permits = 1

z
z

z

🤨
100 years later

33

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsLock.unlock();
permitsCV.wait(); // (note: not final form of wait)
permitsLock.lock();

}
permits--;
permitsLock.unlock();

}

If we give up the lock before calling wait(), someone could notify before we are
ready, because notifications aren't queued! If that is the last notification, we
may wait forever.

34

Deadlock: waitForPermission
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Solution: condition variables are meant for these situations.
• wait() takes a mutex as a parameter
• It will unlock the mutex for us after we are put to sleep.
• When we are notified, it will only return once it has reacquired the mutex for

us.

35

Condition Variable Wait
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

cv.wait() does the following:
1. it puts the caller to sleep and unlocks the given lock, all atomically
2. it wakes up when the cv is signaled
3. upon waking up, it tries to acquire the given lock (and blocks until it's able to do

so)
4. then, cv.wait returns

36

waitForPermission (In progress)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Spoiler: there is a race condition here that could lead to negative permits if
multiple threads are waiting on a permit (e.g. say we limit permits to 3).

37

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 0

😋
🍝

PERMIT

Thread #2

38

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 0

🍝

PERMIT

Thread #2

z
z

z We need to wait
for a permit in
order to eat.

39

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 0

😋
🍝

PERMIT

Thread #2

z
z

z
z

z
z

All done eating! I
will return my permit.

40

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 1

🙂

Thread #2

z
z

z
z

z
z

All done eating! I
will return my permit.

41

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 1

😮

Thread #2

z
z

z
z

z
z

Oh! I should notify
that there is a
permit now.

42

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 1

😲

Thread #2

z
z

z
z

z
z

“Attention waiting
threads, a permit is
available!”

43

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 1

Thread #2

z
z

z

🤩
z

z
z

44

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 1

Thread #2

z
z

z

🤩
z

z
z

45

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 0

Thread #2

z
z

z
z

z
z

😋
🍝

PERMIT

46

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 0

Thread #2

z
z

z

🍝

PERMIT 🤩
z

z
z

47

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = 0

Thread #2

z
z

z

🍝

PERMIT 🤩
z

z
z

48

waitForPermission Over-permitting
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Thread #1 Thread #3

permits = <very large number>

Thread #2

z
z

z

🍝

PERMIT 🤔
z

z
z

FAKE
PERMIT

??

49

waitForPermission (In progress)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
if (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Key Problem: if multiple threads are woken up for one new permit, it's possible
that some of them may have to continue waiting for a permit.
Solution: we must call wait() in a loop, in case we must call it again to wait
longer.

50

waitForPermission (Final version)
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
while (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

Key Problem: if multiple threads are woken up for one new permit, it's possible
that some of them may have to continue waiting for a permit.
Solution: we must call wait() in a loop, in case we must call it again to wait
longer.

dining-philosophers-with-cv-wait.cc

51

Spurious Wakeups
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
while (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

It turns out that in addition to this reason, condition variables can have spurious
wakeups – they wake us up even when not being notified by another thread!
Thus, we should always wrap calls to wait in a while loop.

52

Condition Variable Key Takeaways
A condition variable is a variable that can be shared across threads and used for
one thread to notify other threads when something happens. Conversely, a
thread can also use this to wait until it is notified by another thread.
• We can call wait(lock) to sleep until another thread signals this condition

variable. The condition variable will unlock and re-lock the specified lock for
us.

• This is necessary because we must give up the lock while waiting so another thread may
return a permit, but if we unlock before waiting, there is a race condition.

• We can call notify_all() to send a signal to waiting threads and wake them up.
• We call wait(lock) in a loop in case we are woken up but must wait longer

• This could happen if multiple threads are woken up for a single new permit, or because
of spurious wakeups.

53

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

54

Plan For Today
• Recap and continuing: condition variables and dining philosophers
• Unique locks
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

55

Unique Locks
• It is common to acquire a lock and hold onto it until the end of some scope

(e.g. end of function, end of loop, etc.).
• There is a convenient variable type called unique_lock that when created can

automatically lock a mutex, and when destroyed (e.g. when it goes out of
scope) can automatically unlock a mutex.
• Particularly useful if you have many paths to exit a function and you must

unlock in all paths.

56

grantPermission
We lock at the beginning of this function and unlock at the end.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
permits++;
if (permits == 1) permitsCV.notify_all();
permitsLock.unlock();

}

57

grantPermission
We lock at the beginning of this function and unlock at the end.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

unique_lock<mutex> uniqueLock(permitsLock);
permits++;
if (permits == 1) permitsCV.notify_all();

}

Auto-locks permitsLock here

58

grantPermission
We lock at the beginning of this function and unlock at the end.

static void grantPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

unique_lock<mutex> uniqueLock(permitsLock);
permits++;
if (permits == 1) permitsCV.notify_all();

}

Auto-unlocks permitsLock
here (goes out of scope)

59

waitForPermission
static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

permitsLock.lock();
while (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

60

waitForPermission
static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

unique_lock<mutex> uniqueLock(permitsLock);
while (permits == 0) {

permitsCV.wait(uniqueLock);
}
permits--;

}
Auto-locks permitsLock here

61

waitForPermission
static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

unique_lock<mutex> uniqueLock(permitsLock);
while (permits == 0) {

permitsCV.wait(uniqueLock);
}
permits--;

}

Use it with CV instead of original lock (it has
wrapper methods for manually locking/unlocking!)

62

waitForPermission
static void waitForPermission(size_t& permits,
condition_variable_any& permitsCV, mutex& permitsLock) {

unique_lock<mutex> uniqueLock(permitsLock);
while (permits == 0) {

permitsCV.wait(uniqueLock);
}
permits--;

}

Auto-unlocks permitsLock
here (goes out of scope)

63

Plan For Today
• Recap and continuing: condition variables and dining philosophers
• Unique locks
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

64

Multithreading Patterns
• Writing synchronization code is hard – difficult to reason about, bugs are tricky

if they are hard to reproduce
• E.g. how many locks should we use for a given program?

• Just one? Doesn’t allow for much concurrency
• One lock per shared variable? Very hard to manage, gets complex, inefficient

• Like with dining philosophers, we must consider many scenarios and have lots
of state to track and manage
• One design idea to help: the “monitor” design pattern - associate a single lock

with a collection of related variables, e.g. a class

65

Monitor Design Pattern
• For a multithreaded program, we can define a class that encapsulates the key

multithreading logic and make an instance of it in our program.
• This class will have 1 mutex instance variable, and in all its methods we’ll lock

and unlock it as needed when accessing our shared state, so multiple threads
can call the methods
• We can add any other state or condition variables we need as well – but the

key idea is there is one mutex protecting access to all shared state, and which
is locked/unlocked in the class methods that use the shared state.

66

Plan For Today
• Recap and continuing: condition variables and dining philosophers
• Unique locks
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

67

Bridge Crossing

Let’s write a program that simulates cars crossing a one-lane bridge.
• We will have each car represented by a thread, and they must coordinate as

though they all need to cross the bridge.
• A car can be going either east or west
• All cars on bridge must be travelling in the same direction
• Any number of cars can be on the bridge at once
• A car from the other direction can only go once the coast is clear

One-Lane Bridge

68

Bridge Crossing
int main(int argc, const char *argv[]) {

Bridge bridge;
thread cars[kNumCars];
for (size_t i = 0; i < kNumCars; i++) {

if (flipCoin()) {
cars[i] = thread(crossBridgeEast, i, ref(bridge));

} else {
cars[i] = thread(crossBridgeWest, i, ref(bridge));

}
}
for (thread& car : cars) car.join();
return 0;

}

69

Bridge Crossing
int main(int argc, const char *argv[]) {

Bridge bridge;
thread cars[kNumCars];
for (size_t i = 0; i < kNumCars; i++) {

if (flipCoin()) {
cars[i] = thread(crossBridgeEast, i, ref(bridge));

} else {
cars[i] = thread(crossBridgeWest, i, ref(bridge));

}
}
for (thread& car : cars) car.join();
return 0;

}

Wouldn’t it be cool if, instead of making all
these CVs/locks/etc and managing them directly
in our program, we had a variable type that
would manage them internally?

70

Bridge Crossing
int main(int argc, const char *argv[]) {

Bridge bridge;
thread cars[kNumCars];
for (size_t i = 0; i < kNumCars; i++) {

if (flipCoin()) {
cars[i] = thread(crossBridgeEast, i, ref(bridge));

} else {
cars[i] = thread(crossBridgeWest, i, ref(bridge));

}
}
for (thread& car : cars) car.join();
return 0;

}

Imagine a variable type Bridge that you could
have manage the following:
- “I need to cross!” – would block for you until

you’re able to cross in a given direction.
- ”I’m done crossing!” – would automatically

manage things to potentially allow cars going
the other direction to proceed.

71

Bridge Crossing

static void crossBridgeEast(size_t id, Bridge& bridge) {
approachBridge(); // sleep
bridge.arrive_eastbound(id);
driveAcross(); // sleep
bridge.leave_eastbound(id);

}

Each car thread would run a function like this – the concurrency is managed
internally inside the bridge variable!

72

Bridge Crossing

static void crossBridgeWest(size_t id, Bridge& bridge) {
approachBridge(); // sleep
bridge.arrive_westbound(id);
driveAcross(); // sleep
bridge.leave_westbound(id);

}

Each car thread would run a function like this – the concurrency is managed
internally inside the bridge variable!

arrive_westbound/eastbound would need to know if we are able to cross, and
either return immediately or block.

73

Bridge Crossing

static void crossBridgeWest(size_t id, Bridge& bridge) {
approachBridge(); // sleep
bridge.arrive_westbound(id);
driveAcross(); // sleep
bridge.leave_westbound(id);

}

Each car thread would run a function like this – the concurrency is managed
internally inside the bridge variable!

leave_westbound/eastbound would need to be able to communicate with other
threads who are waiting to cross in the other direction.

74

Demo: Starter Code

car-simulation.cc and bridge.hh/bridge.cc

75

Arriving Eastbound
arrive_eastbound needs to wait for it to be clear for the car to cross, and then
let it cross.
• If other cars are already crossing eastbound, they can go
• If other cars are already crossing westbound, we have to wait

“Waiting for an event to happen” -> condition variable!

76

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

77

Arriving Westbound
arrive_westbound needs to wait for it to be clear for the car to cross, and then
let it cross.
• If other cars are already crossing westbound, they can go
• If other cars are already crossing eastbound, we have to wait

“Waiting for an event to happen” -> condition variable!

82

Plan For Today
• Recap and continuing: condition

variables and dining philosophers
• Unique locks
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect15 .

Lecture 15 takeaway: The
monitor pattern combines
procedures and state into a
class for easier management
of synchronization. Then
threads can call its thread-
safe methods!

