
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 16
Multithreading Patterns 2

😷 masks strongly
recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

Lecture 12 Lecture 13 Lecture 14 /
Last Lecture

This Lecture

assign4: implement several multithreaded programs while eliminating race conditions!

4

Learning Goals
• Understand C++ lambda functions and how they can help us write

multithreaded code
• Learn about the monitor pattern for designing multithreaded code in the

simplest way possible, using classes.

5

Plan For Today
• Recap: Multithreading So Far
• Lambda Functions
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

6

Plan For Today
• Recap: Multithreading So Far
• Lambda Functions
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

7

Multithreading Key Takeaways
• Synchronization code is powerful – it allows us to run multiple tasks at the

same time and coordinate between them.
• Synchronization code is tricky to get right – the coordination can become

complex, and sharing data introduces many opportunities for race conditions/
• Mutexes and condition variables are our 2 main tools to synchronize threads

8

Mutexes
1. Identify a critical section; section that only 1 thread should execute at a time.
2. Create a mutex and share it among all threads executing that critical section
3. Lock the mutex at the start of the critical section
4. Unlock the mutex at the end of the critical section

9

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

10

Plan For Today
• Recap: Multithreading So Far
• Lambda Functions
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

11

Lambda Functions
In C++, it’s possible to define an “anonymous function” that doesn’t have a
name, and whose code is just written inline.
• We can spawn threads in this way – instead of specifying a function name, we

can write the code we want the thread to run directly inline.

12

Revisiting Friends
static void greeting(size_t i) {

cout << oslock << "I am thread " << i << endl << osunlock;
}

...

friends.cc

13

Revisiting Friends
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread(greeting, i);
}

// Wait for threads
for (size_t i = 0; i < kNumFriends; i++) {

friends[i].join();
}

cout << "Everyone's said hello!" << endl;
return 0;

}

14

Friends with Lambda
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread([](int i) -> void {
cout << oslock << "I am thread " << i << endl << osunlock;

}, i);
}

...
} Inline version of:

static void greeting(size_t i) {
cout << oslock << "I am thread " << i << endl << osunlock;

}

15

Friends with Lambda
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread([](int i) -> void {
cout << oslock << "I am thread " << i << endl << osunlock;

}, i);
}

...
}

Empty (for now)
square brackets

16

Friends with Lambda
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread([](int i) -> void {
cout << oslock << "I am thread " << i << endl << osunlock;

}, i);
}

...
}

Parameter list

17

Friends with Lambda
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread([](int i) -> void {
cout << oslock << "I am thread " << i << endl << osunlock;

}, i);
}

...
}

Return type

18

Friends with Lambda
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread([](int i) -> void {
cout << oslock << "I am thread " << i << endl << osunlock;

}, i);
}

...
} Function body

19

Friends with Lambda
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread([](int i) -> void {
cout << oslock << "I am thread " << i << endl << osunlock;

}, i);
}

...
}
Parameter values passed
into thread constructor
(same as before)

20

Lambda Functions
The real power of lambdas come when a function takes another function as a
parameter, and we can specify the function parameter as a lambda.

21

Lambda Functions
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
while (permits == 0) {

permitsCV.wait(permitsLock);
}
permits--;
permitsLock.unlock();

}

This while loop pattern is so common that there is another convenience form of
wait that also includes the loop.
• There is a second parameter which is a function: it should return true when

we wish to stop repeatedly waiting for a notification.

22

CV Wait With Lambda
void condition_variable_any::wait(mutex& m, Function f) {
while (!f()) wait(m);

}

Functions like wait take in a function as a parameter, and they may call the
function later. When they do, they don’t know what parameters to call it with
since they don’t know what the function is. So it cannot take in any parameters.

23

Lambda Functions
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
permitsCV.wait(permitsLock, []() -> bool {

return permits > 0; // how do we access permits without parameters??
});
permits--;
permitsLock.unlock();

}

The [] can contain a list of variables we want to capture from the surrounding
code. We can capture by reference or by copy. Anything we capture can be
used in the lambda body!

24

Lambda Functions
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
permitsCV.wait(permitsLock, [&permits]() -> bool {

return permits > 0;
});
permits--;
permitsLock.unlock();

}

The [] can contain a list of variables we want to capture from the surrounding
code. We can capture by reference or by copy. Anything we capture can be
used in the lambda body!

25

Lambda Functions
static void waitForPermission(size_t& permits, condition_variable_any& permitsCV,
mutex& permitsLock) {

permitsLock.lock();
permitsCV.wait(permitsLock, [&permits]() -> bool {

return permits > 0;
});
permits--;
permitsLock.unlock();

}

Capturing is one of the most powerful uses of lambda functions. It means we
can define functions that take no parameters, but which can reference values in
their surrounding scope.

26

Plan For Today
• Recap: Multithreading So Far
• Lambda Functions
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

27

Multithreading Patterns
• Writing synchronization code is hard – difficult to reason about, bugs are tricky

if they are hard to reproduce
• E.g. how many locks should we use for a given program?

• Just one? Doesn’t allow for much concurrency
• One lock per shared variable? Very hard to manage, gets complex, inefficient

• Like with dining philosophers, we must consider many scenarios and have lots
of state to track and manage
• One design idea to help: the “monitor” design pattern - associate a single lock

with a collection of related variables, e.g. a class

28

Monitor Design Pattern
• For a multithreaded program, we can define a class that encapsulates the key

multithreading logic and make an instance of it in our program.
• This class will have 1 mutex instance variable, and in all its methods we’ll lock

and unlock it as needed when accessing our shared state, so multiple threads
can call the methods
• We can add any other state or condition variables we need as well – but the

key idea is there is one mutex protecting access to all shared state, and which
is locked/unlocked in the class methods that use the shared state.

29

Plan For Today
• Recap: Multithreading So Far
• Lambda Functions
• Monitor pattern
• Example: Bridge Crossing

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

30

Bridge Crossing

Let’s write a program that simulates cars crossing a one-lane bridge.
• We will have each car represented by a thread, and they must coordinate as

though they all need to cross the bridge.
• A car can be going either east or west
• All cars on bridge must be travelling in the same direction
• Any number of cars can be on the bridge at once
• A car from the other direction can only go once the coast is clear

One-Lane Bridge

31

Bridge Crossing
int main(int argc, const char *argv[]) {

Bridge bridge;
thread cars[kNumCars];
for (size_t i = 0; i < kNumCars; i++) {

if (flipCoin()) {
cars[i] = thread(crossBridgeEast, i, ref(bridge));

} else {
cars[i] = thread(crossBridgeWest, i, ref(bridge));

}
}
for (thread& car : cars) car.join();
return 0;

}

32

Bridge Crossing
int main(int argc, const char *argv[]) {

Bridge bridge;
thread cars[kNumCars];
for (size_t i = 0; i < kNumCars; i++) {

if (flipCoin()) {
cars[i] = thread(crossBridgeEast, i, ref(bridge));

} else {
cars[i] = thread(crossBridgeWest, i, ref(bridge));

}
}
for (thread& car : cars) car.join();
return 0;

}

Wouldn’t it be cool if, instead of making all
these CVs/locks/etc and managing them directly
in our program, we had a variable type that
would manage them internally?

33

Bridge Crossing
int main(int argc, const char *argv[]) {

Bridge bridge;
thread cars[kNumCars];
for (size_t i = 0; i < kNumCars; i++) {

if (flipCoin()) {
cars[i] = thread(crossBridgeEast, i, ref(bridge));

} else {
cars[i] = thread(crossBridgeWest, i, ref(bridge));

}
}
for (thread& car : cars) car.join();
return 0;

}

Imagine a variable type Bridge that you could
have manage the following:
- “I need to cross!” – would block for you until

you’re able to cross in a given direction.
- ”I’m done crossing!” – would automatically

manage things to potentially allow cars going
the other direction to proceed.

34

Bridge Crossing

static void crossBridgeEast(size_t id, Bridge& bridge) {
approachBridge(); // sleep
bridge.arrive_eastbound(id);
driveAcross(); // sleep
bridge.leave_eastbound(id);

}

Each car thread would run a function like this – the concurrency is managed
internally inside the bridge variable!

35

Bridge Crossing

static void crossBridgeWest(size_t id, Bridge& bridge) {
approachBridge(); // sleep
bridge.arrive_westbound(id);
driveAcross(); // sleep
bridge.leave_westbound(id);

}

Each car thread would run a function like this – the concurrency is managed
internally inside the bridge variable!

arrive_westbound/eastbound would need to know if we are able to cross, and
either return immediately or block.

36

Bridge Crossing

static void crossBridgeWest(size_t id, Bridge& bridge) {
approachBridge(); // sleep
bridge.arrive_westbound(id);
driveAcross(); // sleep
bridge.leave_westbound(id);

}

Each car thread would run a function like this – the concurrency is managed
internally inside the bridge variable!

leave_westbound/eastbound would need to be able to communicate with other
threads who are waiting to cross in the other direction.

37

Demo: Starter Code

car-simulation.cc and bridge.hh/bridge.cc

38

Arriving Eastbound
arrive_eastbound needs to wait for it to be clear for the car to cross, and then
let it cross.
• If other cars are already crossing eastbound, they can go
• If other cars are already crossing westbound, we have to wait

“Waiting for an event to happen” -> condition variable!

39

Condition Variables
1. Identify a single kind of event that we need to wait / notify for
2. Ensure there is proper state to check if the event has happened
3. Create a condition variable and share it among all threads either waiting for

that event to happen or triggering that event
4. Identify who will notify that this happens, and have them notify via the

condition variable
5. Identify who will wait for this to happen, and have them wait via the

condition variable

40

Arriving Westbound
arrive_westbound needs to wait for it to be clear for the car to cross, and then
let it cross.
• If other cars are already crossing westbound, they can go
• If other cars are already crossing eastbound, we have to wait

“Waiting for an event to happen” -> condition variable!

41

Recap
• Recap: Multithreading So Far
• Lambda Functions
• Monitor pattern
• Example: Bridge Crossing

Next time: how does the OS run and switch between threads?

cp -r /afs/ir/class/cs111/lecture-code/lect16 .

Lecture 15 takeaway: The
monitor pattern combines
procedures and state into a
class for easier management
of synchronization. Then
threads can call its thread-
safe methods!

