
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 17
Trust, Scheduling and Dispatching

😷 masks recommended

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 7 up

through Section 7.2

2

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 17
Trust and Operating Systems

Benjamin Xie, Ph.D.
Embedded EthiCS Fellow

benjixie@stanford.edu | benjixie.com

😷 masks strongly
recommended

Do Now:
1. Congratulate

your neighbor on
getting through
the midterm!

2. Identify 2-3
people, services,
or things you
both trust and
why.

3

What do you trust? How do
you warrant that trust?

4

CS111 Ethics Topic: Trust

Trust in file
systems, OS

Multi-
threading
Patterns

Trust Trust &
Multithreading

Assign 2 Prev. Lecture This (mini)
Lecture

Assign 4

5

Learning Goals
Understand how trust emerges and manifests in the context of operating
systems

6

Plan For Today
• Motivation: Importance of trust in OS
• What is trust?
• How does trust emerge?
• Example: Trusting Linux

7

Plan For Today
• Motivation: Importance of trust in OS
• What is trust?
• How does trust emerge?
• Example: Trusting Linux

8

Trust in OS for Standardization
• OS provides efficiency through standardization
• Users rely on technology built on OS
• App developers build off of OS
• OS creators make decisions that ripple far and

long

9

Interaction between apps and OSs
• Developers build off of OS
• OS creators make decisions that

ripple far and long
• => changes affect each other

Operating Systems

Technology built over OS

10

Examples of OS and app interactions
Changes to OS can affect applications
Example: Windows 95 disabled competitors’ apps

Changes to applications can affect OS
usage
Example: virtual desktop introduces vulnerabilities

Eric Roberts, CS181

11

Plan For Today
• Motivation: Importance of trust in OS

• Trust amongst tech users, app developers, and OS developers is intertwined

• What is trust?
• How does trust emerge?
• Example: Trusting Linux

12

Trust as an unquestioning attitude
• Trust is to stop questioning the dependability of a thing
• Efficiency/safety tradeoff:

• Trust lowers the barrier of monitoring, challenging, checking, and questioning
• Results in more efficiency

• Involves
• Intentions
• Dependence
• Vulnerability/Risk

• Examples?

13

Trusting software is extending agency
• “when we trust, we try to make something

a part of our agency, and we are betrayed
when our part lets us down. To
unquestioningly trust something is to let it
in—to attempt to bring it inside one’s
practical functioning.”
• Example: glucose monitoring

CT Nguyen: Trust as an unquestioning attitude

https://philarchive.org/rec/NGUTAA

14

Risk: Agential Gullibility
• Trusting more than warranted
• Difficult to judge how trust is warranted

given how quickly software changes, hard
to inspect
• Example: glucose monitoring issues w/

Android update

15

Key takeaway
Trust is powerful and necessary, but caries enormous risk. Power of trust is
inseparable from vulnerabilities it creates.

=> Trust (by extending agency) with great care!

16

Plan For Today
• Motivation: Importance of trust in OS

• Trust amongst tech users, app developers, and OS developers is intertwined

• What is trust?
• Extending agency to software

• How does trust emerge?
• Example: Trusting Linux

17

Three paths to trust
1. Assumption: trust absent any cluses to warrant it

1. E.g. using unknown third party library b/c deadline nearing

2. Inference: reputation is based on past performance
1. Log of past actions
2. Trust in brands
3. Trust in prior versions of software

3. Substitution: structural arrangements that partly substitute need for trust
1. Often involves separation of code, responsibilities
2. E.g. user permissions of file system, separating self-driving functionality of car from

infotainment

Paul B. de Laat: How can contributors to open-source communities be trusted? On the assumption, inference, and
substitution of trust

18

Plan For Today
• Motivation: Importance of trust in OS

• Trust amongst tech users, app developers, and OS developers is intertwined

• What is trust?
• Extending agency to software

• How does trust emerge?
• Assumption, inference, substitution

• Example: Trusting Linux

19

Linux is hard to trust

1.1 million commits

13.9k
contributors

8+ million
lines of code

20

Users Trusting Linux
- Why: People use Linux-based tools to extend their agency

- Smartphones: Android based on Linux kernel
- Servers: 13.6% of servers run on Linux
- Supercomputing: 498/500 supercomputers run on Linux

- How trust emerges?
- Assumption

- “never thought about it”
- ”had no other option”

- Inference
- Everyone else uses it.
- Been around for awhile.

- Substitution
- Strong passwords
- Careful about what data is stored on device

21

App Developers Trusting Linux
- Why: Standardization and tools of OS enable efficiency

- High cost to build and maintain new OS
- LINUX is familiar (UNIX-family of OS), lowers learning time developers

- How trust emerges?
- Assumption: somewhat rare given affordances to suggest trust
- Inference

- Used by other app developers
- “lots of stars on GitHub”
- “I met Linus T. and he seemed nice”

- Substitution
- code is open source (read it, fork it)
- “Redundant” checks in code (ex: spurious wakeup)

22

OS Developers Trusting Linux
- Why: No single person can build & maintain an OS. Need to extend agency to

others to support.
- How trust emerges?

- Assumption: rarely happens (risks of bugs, exploits)
- Inference

- Known in community
- Previously code submissions were high quality

- Substitution
- Formalization: tools and procedures to streamline cooperation
- Division of roles
- Decision making: Linus has final authority

“I don’t like the idea of having
developers do their own updates
in my kernel source tree. (...)
“there really aren’t that many
people that I trust enough to
give write permissions to the
kernel tree.”
– Linus Torvalds

23

Recap
• Trust amongst tech users, app

developers, and OS developers is
intertwined
• Trust is about extending agency,

enabling “unquestioning attitude”
• Trust emerges through assumption,

inference, substitution
• Linux kernel to used broadly and

large, so users, app developers, OS
developers must trust through
inference and substitution

Ethics takeaway: Trust is
often required, powerful, and
dangerous. Key design
challenge is how we design
structures that enable us to
substitute trust.

24

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

25

Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?
• Allows us to see how threads are represented and the fairness challenges for

who gets to run next / for how long (next time)
• Shows us what the mechanism looks like for switching between running

threads (today and next time)
• Allows us to understand how locks and condition variables are implemented

(next week)

CS111 Topic 3: Multithreading

assign5: implement your own version of thread, mutex and condition_variable!

26

CS111 Topic 3: Multithreading, Part 2

Scheduling and
Dispatching

Scheduling and
Preemption

Preemption and
Implementing

Locks

This Lecture Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

27

Learning Goals
• Learn about how the operating system keeps track of threads and processes
• Understand the general mechanisms for switching between threads and when

switches occur

28

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads

29

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads

30

Scheduling And Dispatching
• So far, we have learned about how user programs can create new processes

and spawn threads in those processes
• But how does the operating system manage all of this internally? When we

spawn a new thread or create a new process, what happens?

Key questions we will answer:
• How does the operating system track info for threads and processes?
• How does the operating system run a thread and switch between threads?
• How does the operating system decide which thread to run next?

31

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads

32

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

33

Process and Thread State
Key question #1: How does the operating system track info about threads and
processes?
The OS maintains a (private) process control block (“PCB”) for each process - a
set of relevant information about its execution. Lives as long as the process
does.
• Information about memory used by this process
• File descriptor table
• Info about threads in this process
• Other misc. accounting and info

34

Thread State
• Every process has 1 main thread and can spawn

additional threads.
• Threads are the “unit of execution” – processes

aren’t executed, threads are
• All main info in the PCB (e.g. memory info for

the entire process) is relevant to all threads
• Each thread also has some of its own private info

(e.g. stack location)
• Recall: there is a register called %rsp that points

to the top of the stack (“stack pointer”). Non-
running threads must save their %rsp
somewhere for later.

35

Aside: x86-64 Assembly Refresher
• A register is a 64-bit space inside a processor core.
• Each core has its own set of registers.
• Registers are like “scratch paper” for the processor. Data being calculated or

manipulated is moved to registers first. Operations are performed on
registers.
• Registers also hold parameters and return values for functions.
• Some registers have special responsibilities – e.g. %rsp always stores the

address of the current top of the stack.
• When a thread is being kicked off, it must remember its %rsp value so it knows

where its stack is the next time it runs. (we’ll see how it remembers other
register values later)

36

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads

37

Running a Thread
Key Question #2: How does the operating system run a thread and switch
between threads?
• A processor has 1 or more “cores” - Each core contains a complete CPU

capable of executing a thread
• Typically have more threads than cores, but most may not need to run at any

given point in time (why? They are waiting for something)
• When the OS wants to run a thread, it loads its state (e.g. %rsp and other

registers) into a core, and starts or resumes it
• Problem: once we run a thread, the OS is not running anymore! (e.g. 1 core)

How does it regain control?

38

Regaining Control
There are several ways control can switch back to the OS:
1. “Traps” (events that require OS attention):

1. System calls (like read or waitpid)
2. Errors (illegal instruction, address violation, etc.)
3. Page fault (accessing memory that must be loaded in) – more later…

2. “Interrupts” (events occurring outside current thread):
1. Character typed at keyboard
2. Completion of disk operation
3. Timer – to make sure OS eventually regains control

At this point, OS could then decide to run a different thread.

39

Plan For Today
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads

40

Switching Between Threads
When the OS regains control, how does it switch to run another thread?

The dispatcher is OS code that runs on each core that switches between threads
• Not a thread – code that is invoked to perform the dispatching function
• Lets a thread run, then switches to another thread, etc.
• Context switch – changing the thread currently running to another thread. We

must save the current thread state (registers) and load in the new thread state.
• Context switches are funky – like running a function that, as part of its

execution, switches to a completely different function in a completely different
thread!!

41

Demo: context-switch.cc

42

Context Switching
Context switch: how do we switch from thread A3 to thread B1?

43

Context Switching
Step 1: push all registers besides stack register onto the thread’s stack.

44

Context Switching
Step 2: save the stack register into the thread’s state space.

45

Context Switching
Step 3: load B1’s saved stack register from its thread state space.

46

Context Switching
Step 4: pop B1’s other registers from its stack space.

47

Context Switching
A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.
1. Push all registers besides stack onto current thread’s stack
2. Save the current stack register (rsp) into the thread’s state space
3. Load the other thread’s saved stack register from its state space into rsp
4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

48

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

49

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

1. Push all registers besides stack
onto current thread’s stack

50

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

2. Save the current stack register
(rsp) into the thread’s state space

51

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

3. Load the other thread’s saved stack
register from its state space into rsp

52

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

4. Pop registers off the other thread’s stack

53

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

Now we return back to the function in the new
thread that called context_switch previously!
(recall: ret pops the address off the stack for the
instruction we should resume at in the caller)

54

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

55

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

56

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a
function in the current thread

We exit to a call from a function in the new thread!

57

Switching Between Threads
When the OS regains control, how does it switch to run another thread?

• Key idea: we must load the thread’s state onto a processor core and run it
• State = registers

• Registers store data being manipulated by the core
• %rsp stores current top of stack
• Stack remembers what function to continue executing

• If we can load this thread’s %rsp + other saved registers, then it can resume
right where it left off
• Context switch – changing the thread currently running to another thread. We

must save the current thread state and load in the new thread state.

58

Recap
• Overview: Scheduling and Dispatching
• Process and Thread State
• Running a Thread
• Switching Between Threads

Next time: how do we decide which thread to run?

Lecture 17 takeaway: The
OS keeps a process control
block for each process and
uses it to context switch
between threads. To switch
we must freeze frame the
existing register values and
load in new ones.

