
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

CS111, Lecture 18
Dispatching and Scheduling

😷 masks recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 2

Scheduling and
Dispatching

Scheduling and
Preemption

Preemption and
Implementing

Locks

This Lecture Lecture 18 Lecture 19

assign5: implement your own version of thread, mutex and condition_variable!

4

Learning Goals
• Understand the general mechanisms for switching between threads and when

switches occur
• Explore the tradeoffs in deciding which threads get to run and for how long

5

Plan For Today
• Recap and continuing: Context Switching
• Thread States
• Scheduling Threads

6

Plan For Today
• Recap and continuing: Context Switching
• Thread States
• Scheduling Threads

7

Switching Between Threads
When the OS regains control, how does it switch to run another thread?

The dispatcher is OS code that runs on each core that switches between threads
• Not a thread – code that is invoked to perform the dispatching function
• Lets a thread run, then switches to another thread, etc.
• Context switch – changing the thread currently running to another thread. We

must save the current thread state (registers) and load in the new thread state.
• Context switches are funky – like running a function that, as part of its

execution, switches to a completely different function in a completely different
thread!!

8

Context Switch
Thread main_thread;
Thread other_thread;

void other_func() {
cout << "Howdy! I am another thread." << endl;
context_switch(other_thread, main_thread);
cout << "We will never reach this line :(" << endl;

}

int main(int argc, char *argv[]) {
// Initialize other_thread to run other_func
other_thread = create_thread(other_func);

cout << "Hello, world! I am the main thread" << endl;
context_switch(main_thread, other_thread);
cout << "Cool, I'm back in main()!" << endl;

}

• context_switch is called
from one function, but
returns to another
• The next time we switch

back to the original
thread, it resumes where
it left off.

9

Context Switching
Context switch: how do we switch from thread A3 to thread B1?

10

Context Switching
Step 1: push all registers besides stack register onto the thread’s stack.

11

Context Switching
Step 2: save the stack register into the thread’s state space.

12

Context Switching
Step 3: load B1’s saved stack register from its thread state space.

13

Context Switching
Step 4: pop B1’s other registers from its stack space.

14

Context Switching
A context switch means changing the thread currently running to another
thread. We must save the current thread state and load in the new thread state.
1. Push all registers besides stack onto current thread’s stack
2. Save the current stack register (rsp) into the thread’s state space
3. Load the other thread’s saved stack register from its state space into rsp
4. Pop registers off the other thread’s stack

Super funky: we are calling a function from one
thread’s stack and execution and returning
from it in another thread’s stack and execution!

15

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

16

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

1. Push all registers besides stack
onto current thread’s stack

17

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

2. Save the current stack register
(rsp) into the thread’s state space

18

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

3. Load the other thread’s saved stack
register from its state space into rsp

19

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

4. Pop registers off the other thread’s stack

20

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

Now we return back to the function in the new
thread that called context_switch previously!
(recall: ret pops the address off the stack for the
instruction we should resume at in the caller)

21

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

22

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

we start executing on one stack…

and end executing on another!

23

Context Switching
pushq %rbp
pushq %rbx
pushq %r12
pushq %r13
pushq %r14
pushq %r15
movq %rsp,0x2000(%rdi)
movq 0x2000(%rsi),%rsp
popq %r15
popq %r14
popq %r13
popq %r12
popq %rbx
popq %rbp
ret

We enter via a call from a
function in the current thread

We exit to a call from a function in the new thread!

24

Creating New Threads
Problem: when a thread runs for the first time, it won’t have a “freeze frame”.
How does context-switching to a new thread work?
• Key idea: when created, we give a thread a fake “saved state” that appears as

though it was frozen right before executing its first function.
• In other words; we put fake saved registers and a return address that,

when ret runs, will take us "back" to the specified function it should run.

25

Plan For Today
• Recap and continuing: Context Switching
• Thread States
• Scheduling Threads

26

Tracking All Threads
How does the OS track/remember all user threads on the system?

Key idea: at any given time, a thread is in one of three states:
1. Running
2. Blocked – waiting for an event (disk I/O, network connection, etc.)
3. Ready – able to run, but waiting for CPU time

27

Thread States

Running

Ready Blocked

28

Thread States

Running

Ready Blocked

When a thread is created,
it starts out ready.

29

Thread States

Running

Ready Blocked

When the OS lets a
thread run on a core, the
thread goes to running.

30

Thread States

Running

Ready Blocked

If the thread can still run
but the OS needs to run
another thread, the thread
is taken off the core and
goes back to ready.

31

Thread States

Running

Ready Blocked

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

32

Thread States

Running

Ready Blocked

Maybe a thread is running
and reaches a point
where it can’t run
anymore (eg. waiting for
file contents from disk).
The thread will go to
blocked.

33

Thread States

Running

Ready Blocked

If the event the thread is
waiting for happens, and
a core is immediately
available for it, it switches
back to running.

34

Thread States

Running

Ready Blocked

If the event the thread is
waiting for happens, but
the thread can’t run yet, it
switches to ready.

35

Thread States

Running

Ready Blocked

It’s not possible to go
from ready to blocked,
because in order for a
thread to become blocked
it must do work that tells it
it must wait for
something.

36

Thread States

Running

Ready Blocked

Key question: if we have
many ready threads, how
do we decide who to run
next, and for how long?

37

Plan For Today
• Recap and continuing: Context Switching
• Thread States
• Scheduling Threads

38

First-come-first-serve
Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

One idea - “first-come-first-serve”: keep all ready threads in a ready queue.
Add threads to the back. Run the first thread on the queue until it exits or
blocks (no timer).

Problem: thread could run away with core and run forever!

39

Round Robin
Problem: thread could run away with core and run forever!
Solution: define a time slice, the max run time without a context switch (e.g.
10ms).

Idea: round robin scheduling – run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice?
Thought: we want to run many threads in the amount of time for human
response time, so e.g. keystroke seems instantaneous. So why not make the
time slice microscopically small?

40

Round Robin
Idea: round robin scheduling – run thread for one time slice, then put at back of
ready queue. (you’ll use this on assign5)

Question: what’s a good time slice? Why not make it microscopically small?
If too small, context switch costs are very high, waste cores

Why not make it very large?
If too large, slow response, threads can monopolize cores

Try to balance: usually in 5-10ms range, Linux is 4ms

41

Scheduling Algorithms
How do we decide whether a scheduling algorithm is good?
• Minimize response time (time to useful result)

• e.g. keystroke -> key appearing, or “make” -> program compiled
• Assume useful result is when the thread blocks or completes

• Use resources efficiently
• keep cores + disks busy
• low overhead (minimize context switches)

• Fairness (e.g. with many users, or even many jobs for one user)

58

Recap
• Recap and continuing: Context

Switching
• Thread States
• Scheduling Threads

Next time: preemption and
implementing mutexes

Lecture 18 takeaway:
Context switching switches
from one thread’s stack to the
next, saving and restoring
registers. For scheduling, we
want to minimize response
time, use resources
efficiently, and be fair.

