
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under 
Creative Commons Attribution 2.5 License.  All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others. 
NOTICE RE UPLOADING TO WEBSITES:  This content is protected and may not be shared, 

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 19
Preemption and Implementing Locks

😷 masks recommended



2

Topic 3: Multithreading - How 
can we have concurrency within a 
single process? How does the 
operating system support this?



3

CS111 Topic 3: Multithreading, Part 2

Scheduling and 
Dispatching

Scheduling and 
Preemption, 
Continued

Preemption and 
Implementing 

Locks

Lecture 17 Lecture 18 This Lecture

assign5: implement your own version of thread, mutex and condition_variable!



4

Learning Goals
• Compare tradeoffs between various approaches to scheduling
• Learn about the assign5 infrastructure and how to implement a dispatcher 

with preemption
• See how our understanding of thread dispatching/scheduling allows us to 

implement locks



5

Plan For Today
• Recap and continuing: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .



6

Plan For Today
• Recap and continuing: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .



7

Scheduling
Key Question: How does the operating system decide which thread to run next? 
(e.g. many ready threads).  Assume just 1 core.
We discussed 2 main designs so far:
1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add 

threads to the back, run thread from front until completion or blocking.
2. Round Robin: run thread for one time slice, then add to back of queue if 

wants more time



8

Scheduling Algorithms
How do we decide whether a scheduling algorithm is good?
• Minimize response time (time to useful result)

• e.g. keystroke -> key appearing, or “make” -> program compiled
• Assume useful result is when the thread blocks or completes

• Use resources efficiently
• keep cores + disks busy
• low overhead (minimize context switches)

• Fairness (e.g. with many users, or even many jobs for one user)



9

Comparing FCFS/RR: Scenario 1



10

Comparing FCFS/RR: Scenario 1



11

Comparing FCFS/RR: Scenario 1

Is RR always
better than FCFS?



12

Comparing FCFS/RR: Scenario 2



13

Comparing FCFS/RR: Scenario 2



14

What’s the optimal 
approach if we want to 

minimize average 
response time? 



15

Shortest Remaining Processing Time
What would it look like if we optimized for completion time?  (time to finish, or 
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to 
completion.  This is the optimal solution for minimizing average response time.



16

Evaluating SRPT



17

Evaluating SRPT



18

Evaluating SRPT



19

Evaluating SRPT



20

Shortest Remaining Processing Time
SRPT: pick the thread that will finish the most quickly and run it to completion.  
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be 
able to predict the future…)
Problem #2: if we have many short-running threads and one long-running one, 
the long one will not get to run (“starvation”)

How can we get close to SRPT but without having to predict the future or 
neglect certain threads?



22

Priority-Based Scheduling
Goal: we want to get close to SRPT, but without having to predict the future, and 
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.
• Behavior tends to be consistent
• If a thread runs for a long time without blocking, it’s likely to continue running



23

Priority-Based Scheduling
Goal: we want to get close to SRPT, but without having to predict the future, and 
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run.  We’ll 
have 1 ready queue for each priority, and always run highest-priority threads.
• Overall idea: threads that aren't using much CPU time stay in the higher-

priority queues, threads that are migrate to lower-priority queues.
• After blocking, thread starts in highest priority queue
• If a thread reaches the end of its time slice without blocking it moves to the 

next lower queue.
Problem: could still neglect long-running threads!



24

Priority-Based Scheduling
Idea: let’s make threads have priorities that adjust over time as they run.  We’ll 
have 1 ready queue for each priority, and always run highest-priority threads.
Problem: could still neglect long-running threads!

Let’s keep track of recent CPU usage per thread.  If a thread hasn’t run in a long 
time, its priority goes up.  And if it has run a lot recently, priority goes down.  
(4.4 BSD Unix used this, ideas carried forward)
• No more neglecting threads: a thread that hasn’t run in a long time will get its 

priority increased
• If there are many equally-long threads that want to run, the priorities even out 

over time, at a kind of “equilibrium”



25

Scheduling
Key Question: How does the operating system decide which thread to run next? 
(e.g. many ready threads).  Assume just 1 core.
We discussed 4 main designs:
1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add 

threads to the back, run thread from front until completion or blocking.
2. Round Robin: run thread for one time slice, then add to back of queue if 

wants more time
3. Shortest Remaining Processing Time (SRPT): pick the thread that will 

complete or block the soonest and run it to completion.
4. Priority-Based Scheduling: threads have priorities, and we have one ready 

queue per priority.  Threads adjust priorities based on time slice usage, or 
based on recent CPU usage (4.4 BSD Unix)



26

Plan For Today
• Recap and continuing: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .



27

Preemption and Interrupts
On assign5, you’ll implement a dispatcher and scheduler using the Round Robin 
approach.
• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run 
code every X microseconds.
• Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)



28

Timer Demo
// this program runs timer_interrupt_handler every 0.5 seconds

void timer_interrupt_handler() {
cout << "Timer interrupt occurred!" << endl;

}

int main(int argc, char *argv[]) {    
// specify microsecond interval and function to call
timer_init(500000, timer_interrupt_handler);
while (true) {}

}

interrupt.cc



29

Demo: context-switch-
preemption-buggy.cc



30

Interrupts
When the timer handler is called, it’s called with (all) interrupts disabled.  Why?  
To avoid a timer handler interrupting a timer handler.
When the timer handler finishes, interrupts are re-enabled.

// within timer code

// (omitted) timer disables interrupts here
your_timer_handler();
// (omitted) timer re-enables interrupts here

Interrupt state is shared (not per-thread).



31

Interrupts
When the timer handler is called, it’s called with (all) interrupts disabled.  Why?  
To avoid a timer handler interrupting a timer handler.
When the timer handler finishes, interrupts are re-enabled.

// within timer code

// (omitted) timer disables interrupts here
your_timer_handler();
// (omitted) timer re-enables interrupts here

Problem: because we context switch in the middle of the timer handler, when 
we start executing another thread for the first time, we will have interrupts 
disabled and the timer won’t be heard anymore!



32

Enabling Interrupts
Solution: manually enable interrupts when a thread is first run.
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here! Hello." << endl;
}

}

On assign5: when a program creates a thread and gives you the function that 
thread should run, you will run that thread initially by enabling interrupts first 
and then running their specified function.



33

Disabling/Enabling Interrupts
The assignment starter code provides the following to enable or disable 
interrupts:

void intr_enable(bool on);



36

Interrupts
What about when we switch to a thread that we’ve already run before?  Do we 
need to enable interrupts there too?

No – if a thread is paused that means when it was previously running, the timer 
handler was called and it context-switched to another thread.  Therefore, when 
that thread resumes, it will resume at the end of the timer handler, where 
interrupts are re-enabled.



58

Interrupts
On assign5, there are other places where interrupts can cause complications.
• E.g. we could be in the middle of adding to the ready queue, but then the 

timer fires and we go to remove something from the ready queue!
• This sounds like a race condition problem we can solve with mutexes!....right?
• Not in this case – because we are the OS, and we implement mutexes!  And 

they rely on the thread dispatching code in this assignment.
• Therefore, the mechanism for avoiding race conditions is to enable/disable 

interrupts when we don’t want to be interrupted (e.g. by timer).
• Interrupts are a shared state – not per-thread.
• We’re assuming a single-core machine, where disabling interrupts is sufficient 

to guarantee no other thread will run.



59

Plan For Today
• Recap and continuing: Scheduling
• Preemption and Interrupts
• Implementing Locks

cp -r /afs/ir/class/cs111/lecture-code/lect19 .



60

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can 
write our own mutex implementation!  Mutexes need to block threads 
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like?  What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock



61

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can 
write our own mutex implementation!  Mutexes need to block threads 
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like?  What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

We can keep a queue of threads 
(for fairness). (Hint: C++ has a 
built-in queue data structure)



62

Lock
1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();  // block/switch to next ready thread

}
}



63

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove()); // add to ready queue
}

}



64

Mutex
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);

// block/switch to next
// ready thread
blockThread(); 

}
}

void Lock::unlock() {
if (q.empty()) {

locked = 0;
} else {

// add to ready queue
unblockThread(q.remove()); 

}
}

Can you think of an example race condition that 
could occur if we do not disable interrupts here and 
two threads lock a single mutex at the same time?



65

Mutex
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);

// block/switch to next
// ready thread
blockThread(); 

}
}

void Lock::unlock() {
if (q.empty()) {

locked = 0;
} else {

// add to ready queue
unblockThread(q.remove()); 

}
}

Can you think of an example race condition that 
could occur if we do not disable interrupts here and 
two threads lock a single mutex at the same time?

Example: thread 1 is in the middle of getting 
ownership, but then the timer fires, we switch to 
thread 2, and it locks the mutex.  Then thread 1 
resumes and also gets the mutex.



66

Lock
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
intr_enable(true); // ??
blockThread();  // block/switch to next ready thread

}
}

Possible scenario (2 threads):
1. Thread #1 locks mutex
2. Thread #2 locks mutex, adds 

itself to the queue, enables 
interrupts

3. Right before thread #2 blocks, 
thread #1 unlocks the mutex 
and unblocks thread #2

4. Thread #2 then proceeds to 
block.

5. Nobody unblocks thread #2 L



67

Lock
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();  // block/switch to next ready thread

}
}

Instead, we must re-enable 
interrupts at the end of lock().  This 
means that once a thread unblocks
to acquire the lock, it wakes up 
after blockThread() and re-enables 
interrupts.



68

Lock
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();  // block/switch to next ready thread

}
}

IntrGuard is like unique_lock but 
for interrupts.  It saves the current 
interrupt state (enabled/disabled) 
when it’s created and turns 
interrupts off.  When it is deleted, it 
restores interrupts to the saved 
state.

Key idea: if interrupts are already 
disabled when an IntrGuard is 
created, it keeps them disabled.



69

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove()); // add to ready queue
}

}



70

Lock
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();  // block/switch to next ready thread

}
}

Problem: what happens when we 
switch to the next ready thread?  
Interrupts will be disabled!



71

Lock
// Instance variables
int locked = 0; 
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();  // block/switch to next ready thread

}
}

Problem: what happens when we 
switch to the next ready thread?  
Interrupts will be disabled!

Key Idea: we know that every 
possible way a thread resumes (e.g.
timer), it will re-enable interrupts.  
Therefore, this isn’t a problem.



72

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔓



73

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔓



74

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔓



75

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



76

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



77

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



78

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



79

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



80

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



81

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



82

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



83

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2 (blocked)
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



84

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2 (blocked)
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



85

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2 (blocked)
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



86

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



87

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



88

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



89

Enabling/Disabling Interrupts
Thread #1 
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
OFF🔒



90

Enabling/Disabling Interrupts
Thread #1 
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables 
interrupts when resumed and 
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts 
ON🔒



91

Plan For Today
• Recap and continuing: Scheduling
• Preemption and Interrupts
• Implementing Locks

Next time: Virtual Memory

Lecture 19 takeaway: To 
implement preemption and 
locks, we must make sure to 
correctly enable and disable 
interrupts.  Locks consist of a 
waiting queue and 
redispatching to make 
threads sleep.


