
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 22
Dynamic Address Translation

😷 masks recommended

2

Topic 4: Virtual Memory - How
can one set of memory be shared
among several processes? How
can the operating system manage
access to a limited amount of
system memory?

3

CS111 Topic 4: Virtual Memory

Virtual
Memory

Introduction

Dynamic
Address

Translation
Paging Demand

Paging
The Clock
Algorithm

Lecture 21 Today Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Lecture 23 Lecture 25

4

Learning Goals
• Understand the benefits of dynamic address translation
• Reason about the tradeoffs in different ways to implement dynamic address

translation

5

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #1: Base and Bound
• Approach #2: Multiple Segments
• Approach #3: Paging

6

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #1: Base and Bound
• Approach #2: Multiple Segments
• Approach #3: Paging

7

Virtual memory is a
mechanism for multiple

processes to
simultaneously use system

memory.

8

Sharing Memory
We want to allow multiple processes to simultaneously use system memory.
Our goals are:
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared. Each

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing

9

Load-Time Relocation
• When a process is loaded to run, place it in a

designated memory space.
• That memory space is for everything for that process –

stack/data/code
• Interesting fact – when a program is compiled, it is

compiled assuming its memory starts at address 0.
Therefore, we must update its addresses when we load
it to match its real starting address.
• Use first-fit or best-fit allocation to manage available

memory.
• Problems: isolation, deciding memory sizes in advance,

fragmentation, updating addresses when loading

Process 1

0

∞

Process 3

Operating
System

Process 6

10

Idea: What if, instead of
translating addresses when
a program is loaded, the OS
intercepted every memory

reference and translated it?

11

Dynamic Address Translation
Let’s have the OS intercept every memory reference a process makes.
• The OS can prohibit processes from accessing certain addresses (e.g. OS

memory or another process’s memory)
• Gives the OS lots of flexibility in managing memory
• Every process can now think that it is located starting at address 0
• The OS will translate each process’s address to the real one it’s mapped to

12

Dynamic Address Translation
We will add a memory management unit (MMU) in hardware that changes
addresses dynamically during every memory reference.
• Virtual address is what the program sees
• Physical address is the actual location in memory

Core MMU Memory
Virtual address Physical address

data

13

Dynamic Address Translation
• Every process can think it starts at address 0 and is the only process in memory
• Behind the scenes, the OS can choose how it maps each process’s virtual

addresses to real (“physical”) addresses
• As a result, a process’s virtual address space may look very different from how

the memory is really laid out in the physical address space.

14

Key Question: How do the
MMU/OS translate from

virtual addresses to
physical ones?

15

Dynamic Address Translation
Key question: how do the MMU / OS translate from virtual addresses to physical
ones? Three designs we’ll consider:
1. Base and bound
2. Multiple Segments
3. Paging

16

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #1: Base and Bound
• Approach #2: Multiple Segments
• Approach #3: Paging

17

Approach #1: Base and Bound
• “base” is physical address starting point – corresponds to virtual address 0
• “bound” is one greater than highest allowable virtual memory address
• Each process has own base/bound. Stored in PCB and loaded into two

registers when running.

On each memory reference:
• Compare virtual address to bound, trap if >= (invalid memory reference)
• Otherwise, add base to virtual address to produce physical address

18

Approach #1: Base and Bound
• Key idea: each process appears to have a completely private memory whose

size is determined by the bound register.
• The only physical address is in the base register, controlled by the OS. Process

sees only virtual addresses!
• OS can update a process’s base/bound if needed! E.g. it could move physical

memory to a new location or increase bound.

19

Approach #1: Base and Bound
What are some benefits of this approach?
• Inexpensive translation – just doing addition
• Doesn’t require much additional space – just per-process base + bound
• The separation between virtual and physical addresses means we can move

the physical memory location and simply update the base, or we could even
swap memory to disk and copy it back later when it’s actually needed.

What are some drawbacks of this approach?
• One contiguous region per program
• Fragmentation
• Growing can only happen upwards with the bound
• Doesn’t support read-only regions of memory within a process

20

Idea: what if we broke up
the virtual address space

into segments and mapped
each segment

independently?

21

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #1: Base and Bound
• Approach #2: Multiple Segments
• Approach #3: Paging

22

Approach #2: Multiple Segments
Key Idea: Each process is split among several variable-size areas of memory,
called segments.
• E.g. one segment for code, one segment for data/heap, one segment for stack.
• The OS maps each segment individually – each segment would have its own

base and bound, and these are stored in a segment map for that process
• We can also store a protection bit for each segment; whether the process is

allowed to write to it or not in addition to reading
• Now each segment can have its own permissions, grow/shrink independently,

be swapped to disk independently, be moved independently, and even be
shared between processes (e.g. shared code).

23

Multiple Segments

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceProcess B Virtual Address Space

Code
0

∞

Data

Stack

24

Approach #2: Multiple Segments
On each memory reference:
• Look up info for the segment that address is in
• Compare virtual address to that segment’s bound, trap if >= (invalid memory

reference)
• Add segment’s base to virtual address to produce physical address

Problem: how do we know which segment a virtual address is in?

25

Approach #2: Multiple Segments
Problem: how do we know which segment a virtual address is in?
One Idea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Example: PDP-10 computer had design with 2 segments, and the most-
significant bit in addresses encoded which one was being referenced.

0x122 0x456

Virtual Address

Segment # Offset

26

Approach #2: Multiple Segments
Problem: how do we know which segment a virtual address is in?
One Idea: make virtual addresses such that the top bits of the address specify its
segment, and the low bits of the address specify the offset in that segment.

Another possibility: deduce from machine code instruction executing

27

Approach #2: Multiple Segments
What are some benefits of this approach?
• Flexibility – can manage each segment independently
• Can share segments between processes
• Can move segments to compact memory and eliminate fragmentation

What are some drawbacks of this approach?
• Variable-length segments result in memory fragmentation – can move, but

creates friction
• Typically small number of segments
• Encoding segment + offset rigidly divides virtual addresses (how many bits for

segment vs. how many for offset?)

28

Idea: what if we broke up
the virtual address space
not into variable-length

segments, but into fixed-
size chunks?

29

Plan For Today
• Recap: virtual memory and dynamic address translation
• Approach #1: Base and Bound
• Approach #2: Multiple Segments
• Approach #3: Paging

30

Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages
• The page number is a numerical ID for a page. We have virtual page numbers

and physical page numbers.
• A virtual address is comprised of the virtual page # and offset in that page.
• A physical address is comprised of the physical page # and offset in that page.
• Each process has a page map (“page table”) with an entry for each virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).

31

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

32

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

33

Paging

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space

34

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # = index

35

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

36

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

Virtual page # Offset

Virtual Address

Physical page # Offset

Physical Address

12 bits 12 bits

For 4KB pages (4096 bytes), the offset can be 0-4095. Thus,
we can store the offset in 12 bits (the amount needed to
represent any number 0-4095). 12 bits = 3 hexadecimal digits.

37

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

38

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address Physical Address

Virtual page # Physical page #Offset Offset

0x3400

??? ???

???

39

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342

Physical Address

Virtual page # Physical page #Offset Offset

0x3400

???

???

40

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 ???

41

Page Map

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x3 0x400

Virtual Address

0x2342 0x400

Physical Address

Virtual page # Physical page #Offset Offset

0x3400 0x2342400

42

Practice: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

??? ???

Virtual Address

??? ???

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 ???

43

Practice: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

0x1 0x456

Virtual Address

0x13241 0x456

Physical Address

Virtual page # Physical page #Offset Offset

0x1456 0x13241456

44

Practice: What is the physical address?

Index Physical page # Writeable?
… … …
3 0x2342 1
2 0x12625 1
1 0x13241 0
0 0x256 0

unused (16 bits) Virtual page # (36 bits) Offset (12 bits)

x86-64 64-bit Virtual Address

Physical page # (40 bits) Offset (12 bits)

x86-64 52-bit Physical Address

x86-64 with 4KB pages has 36-bit virtual page numbers and 40-bit physical page numbers.

45

Paging
On each memory reference:
• Look up info for that virtual page in the page map
• If it’s a valid virtual page number, get the physical page number it maps to, and

combine it with the specified offset to produce the physical address.

Problem: what about invalid page numbers? I.e. how do we know/represent
which pages are valid or invalid?
Solution: have entries in the page map for all pages, including invalid ones. Add
an additional field marking whether it’s valid (“present”).

46

Page Map

Index Physical page # Writeable? Present?
… … … …
3 0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

47

Page Map

Index Physical page # Writeable? Present?
… … … …
3 0x2342 1 1
2 XXX X 0
1 0x13241 0 1
0 XXX X 0

If there is a memory access in virtual pages 0 or 2 here, it
would trap due to an invalid memory reference.

48

Paging
How do we provide memory to a process?
• Keep a global free list of physical pages – grab the first one when we need one
• Update process page table for a virtual page to map to this physical page, and

mark present / set permission bit

In this way, we can represent a process’s segments (e.g. code, data) as a
collection of 1 or more pages, starting on any page boundary.

49

Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages
• Each process has a page map (“page table”) with an entry for every virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write) and whether it is present.
• The page map is stored in contiguous memory

Problem: how big is a single process’s page map? You said an entry for every
page?

50

Recap
• Recap: virtual memory and dynamic

address translation
• Approach #1: Base and Bound
• Approach #2: Multiple Segments
• Approach #3: Paging

Next time: more about paging

Lecture 22 takeaway:
Dynamic Address translation
means that the OS intercepts
and translates each memory
access. Initial approaches to
this include base+bound per
process, or expanding that to
be base+bound per variable-
length segment, or instead
dividing into fixed-size pages.

