
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 23
Demand Paging

😷 masks recommended

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 9

2

Topic 4: Virtual Memory - How
can one set of memory be shared
among several processes? How
can the operating system manage
access to a limited amount of
system memory?

3

CS111 Topic 4: Virtual Memory

Virtual Memory
Introduction

Dynamic
Address

Translation
Paging Demand Paging

The Clock
Algorithm and

Virtual Memory
Wrap-Up

Lecture 21 Lecture 22 Lecture 24

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Lecture 22 Today

4

Learning Goals
• Learn about page maps and how they help translate virtual addresses to

physical addresses
• Understand how paging allows us to swap memory contents to disk when we

need more physical pages.
• Learn about the benefits of demand paging in making memory look larger than

it really is

5

Plan For Today
• Recap: Paging so far
• Page Map Size
• Demand Paging

6

Plan For Today
• Recap: Paging so far
• Page Map Size
• Demand Paging

7

Approach #3: Paging
Key Idea: Each process’s virtual (and physical) memory is divided into fixed-size
chunks called pages. (Common size is 4KB pages).
• A “page” of virtual memory maps to a “page” of physical memory. No partial

pages
• The page number is a numerical ID for a page. We have virtual page numbers

and physical page numbers.
• Each process has a page map (“page table”) with an entry for each virtual

page, mapping it to a physical page number and other info such as a protection
bit (read-only or read-write).

8

Multiple Segments

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

9

Multiple Segments

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceProcess B Virtual Address Space

Code
0

∞

Data

Stack

10

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

11

Paging

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

12

Page Map

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

13

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

14

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

15

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

Virtual Address
0x2223

16

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

17

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

18

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

??? 0x223
Physical page # Offset

Physical Address
???

19

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 0x223
Physical page # Offset

Physical Address
???

20

Process A Virtual
Address Space

Code
0

Data

0

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Page Map

0x2 0x223
Virtual page # Offset

Virtual Address
0x2223

0x1 0x223
Physical page # Offset

Physical Address
0x1223

21

Requesting More Memory

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

22

Requesting More Memory

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

23

Requesting More Memory

Process A Virtual
Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address Space

Physical page # WR? PR?

12 3 1 1

11 0 1 1

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

24

Paging

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space

25

Each Process Has A Page Map

Process A Virtual Address Space

Code
0

∞

Data

Stack

0

∞

Physical Address SpaceCode0

∞

Data

Stack

Process B Virtual Address Space

Physical page # WR? PR?

12 3 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 2 1 1

3 9 0 1

2 1 0 1

1 7 0 1

0 5 0 1

Physical page # WR? PR?

12 10 1 1

11 X X 0

10 X X 0

9 X X 0

8 X X 0

7 X X 0

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 8 1 1

0 12 0 1

26

Paging Summary
Each process has a page map (“page table”) with an entry for every virtual page,
mapping it to a physical page number and other info such as a protection bit
(read-only or read-write) and whether it is present.
• The page map is stored in contiguous memory
• All pages the same size – no more external fragmentation! (but some internal

fragmentation if not all of a page is used)

Problem: how big is a single process’s page map? You said an entry for every
page?

27

Plan For Today
• Recap: Paging so far
• Page Map Size
• Demand Paging

28

Page Map Size
Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s? 236

236 virtual pages x 8 bytes per page entry = ???

29

Page Map Size
Problem: how big is a single process’s page map? An entry for every page?
Example with x86-64: 36-bit virtual page numbers, 8-byte map entries

How many possible virtual page #s? 236

236 virtual pages x 8 bytes per page entry = 512GB!! (239 bytes)

Plus, most processes are small, so most pages will be “not present”. And even
large processes use their address space sparsely (e.g. code at bottom, stack at
top).

30

Page Map Size
x86-64 solution: represent the page map as a multi-level tree.
• Top level of page map has entries for ranges of virtual pages (0 to 227-1), 227 to

254 – 1, etc.). Only if any pages in that range are present, that entry points to a
lower level in the tree. If not, it doesn’t (saves space).
• Lower levels follow a similar structure – entry for ranges of pages, and they

only map to something if at least one of the pages in that range is present.
• The lowest level of the tree contains actual physical page numbers.

31

x86-64 Page Map Tree Structure

16 9 9 9 9 12

PML4

PML3
(Page Directory
Pointer Table)

Page Number Offset
PML4 Base

64-bit Virtual Address

52-bit Physical Address

40 12

PML2
(Page Directory)

PML1
(Page Table)

*Don’t worry about specifics for now!

33

assign6
On assign6, you’ll implement your own virtual memory system using paging:
• You’ll intercept memory requests
• You’ll maintain a page map mapping virtual addresses to physical ones

34

Plan For Today
• Recap: Paging so far
• Page Map Size
• Demand Paging

35

Demand Paging
If memory is in high demand, we could fill up all of memory, since a process
needs all its pages in memory to run.

Thought: does a process really need all its allocated pages in memory?

Let’s say memory is full, and a process wants another page. We could “borrow”
a used physical page – we’ll store its existing contents on disk, and then use the
page for this new data. If the old contents are referenced later, we’ll load them
back into a physical page.

Overall goal: make physical memory look larger than it is.

36

Demand Paging
• Locality – most programs spend most of their time using a small fraction of

their code and data
• Keep in memory the information that is being used, and keep unused

information on disk, moving info back and forth as needed.
• Ideally: we have a memory system with the performance of main memory and

the cost/capacity of disk!

37

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 1

38

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 1

1. Pick an existing
physical page and swap
it to disk.

39

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 X X 0

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

1. Pick an existing
physical page and swap
it to disk, mark not
present.

Disk Swap
Space

vpage #0

40

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. Map this physical
page to the new virtual
page.

Disk Swap
Space

vpage #0

41

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

1. We look in the page
map and see it’s not
present.

Disk Swap
Space

vpage #0

42

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 1

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

vpage #0

43

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 0

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 1 0 0

2. But it is stored in disk
swap, so we load it back
in (kicking another page if
needed).

Disk Swap
Space

vpage #0

vpage #7

44

Demand Paging

Process A Virtual
Address Space

Code0

∞

Data

Stack

0

∞

Physical Address Space
Physical page # WR? PR?

7 0 1 0

6 1 1 1

5 X X 0

4 X X 0

3 X X 0

2 X X 0

1 2 0 1

0 0 0 1

2. But we look in the disk
swap and see it is stored
there, so we load it back
in (kicking another page if
needed).

Disk Swap
Space
vpage #7

45

Demand Paging
If we need another page but memory is full:
1. Pick a page to kick out
2. Write it to disk
3. Mark the old page map entry as not present
4. Update the new page map entry to be present and map to this physical page

46

Demand Paging
If the program accesses a page that was swapped to disk:
1. Triggers a page fault (not-present page accessed)
2. We see disk swap contains data for this page
3. Get a new physical page (perhaps kicking out another one)
4. Load the data from disk into that page
5. Update the page map with this new mapping

47

Disk Swap
We don’t always need to write a swapped-out page to disk – e.g. read-only code
pages can always be loaded from executable. And we may have initial data for a
page that wasn’t previously swapped out.

There are three categories of pages for swapping to disk:
1. Read-only code pages: read from executable when needed
2. Initialized data pages: on first access, read from executable. Once loaded,

save to swap file since contents may have changed.
3. Uninitialized data pages: e.g. stack, heap – on first access, just clear memory

to all zeros. Save to swap file as needed.

48

Thrashing
This can provide big benefits – but what potential scenario would lead demand
paging to slow the system way down?

If the pages being actively used don’t all fit in memory, the system will spend all
its time reading and writing pages to/from disk and won’t get much work done.
• Called thrashing
• The page we kick to disk will be needed very soon, so we will bring it back and

kick another page, which will be needed very soon, etc….
• Progress of the program will make it look like access time of memory is as slow

as disk, rather than disks being as fast as memory. L
• With personal computers, users can notice thrashing and kill some processes

49

Page Fetching
When should we bring pages into memory?
• Most modern OSes start with no pages loaded, load pages when referenced

(“demand fetching”).
• Alternative: prefetching - try to predict when pages will be needed and load

them ahead of time (requires predicting the future…)

Which pages should we throw out of memory if we need more space?

50

Page Replacement
If we need another physical page but all memory is used, which page should we
throw out?
• Random? (works surprisingly well!)
• FIFO? (throw out page that’s been in memory the longest) – fairness
• Would be nice if we could pick page whose next access is farthest in the future,

but we’d need to predict the future…
• LRU (least-recently-used)? Replace page that was accessed the longest time

ago.

More next time…

51

Recap
• Recap: Paging so far
• Page Map Size
• Demand Paging

Next time: how to choose which
pages to swap to disk (the clock
algorithm).

Lecture 24 takeaway: We
can make memory appear
larger than it is by swapping
pages to disk when we need
more space and swapping
them back later.

