
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 24
The Clock Algorithm

😷 masks recommended

2

Announcements
• assign6 released tomorrow
• Friday’s lecture: virtualization and trust + assign6 YEAH

3

Topic 4: Virtual Memory - How
can one set of memory be shared
among several processes? How
can the operating system manage
access to a limited amount of
system memory?

4

CS111 Topic 4: Virtual Memory

Virtual Memory
Introduction

Dynamic
Address

Translation
Paging Demand Paging

The Clock
Algorithm and

Virtual Memory
Wrap-Up

Lecture 21 Lecture 22 Today

assign6: implement demand paging system to translate addresses and load/store
memory contents for programs as needed.

Lecture 22 Lecture 23

5

Learning Goals
• Learn about tradeoffs in approaches for choosing pages to kick out of memory
• Walk through the implementation of the clock algorithm, one algorithm for

choosing which page to throw out

6

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS Runs?
• Virtual Memory summary

7

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

8

Demand Paging
If memory is in high demand, we could fill up all of memory, since a process
needs all its pages in memory to run.

Thought: does a process really need all its allocated pages in memory?

Let’s say memory is full, and a process wants another page. We could “borrow”
a used physical page – we’ll store its existing contents on disk, and then use the
page for this new data. If the old contents are referenced later, we’ll load them
back into a physical page.

Overall goal: make physical memory look larger than it is.

9

Demand Paging
If we need another page but memory is full:
1. Pick a page to kick out
2. Write it to disk
3. Mark the old page map entry as not present
4. Update the new page map entry to be present and map to this physical page

10

Demand Paging
If the program accesses a page that was swapped to disk:
1. Triggers a page fault (not-present page accessed)
2. We see disk swap contains data for this page
3. Get a new physical page (perhaps kicking out another one)
4. Load the data from disk into that page
5. Update the page map with this new mapping

11

Disk Swap
We don’t always need to write a swapped-out page to disk – e.g. read-only code
pages can always be loaded from executable. And we may have initial data for a
page that wasn’t previously swapped out.

There are three categories of pages for swapping to disk:
1. Read-only code pages: read from executable when needed
2. Initialized data pages: on first access, read from executable. Once loaded,

save to swap file since contents may have changed.
3. Uninitialized data pages: e.g. stack, heap – on first access, just clear memory

to all zeros. Save to swap file as needed.

12

Disk Swap
We don’t always need to write a swapped-out page to disk – e.g. read-only code
pages can always be loaded from executable. And we may have initial data for a
page that wasn’t previously swapped out.

On assign6:
• You’ll only write to disk if a page is “dirty” (modified). Page maps contain a

dirty bit that is set whenever a page is modified.
• A page may have contents on disk from the executable or from a previous

swap – you’ll read into memory in both cases.

13

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

14

Page Replacement
If we need another physical page but all memory is used, which page should we
throw out? How do we pick?
• Random? (works surprisingly well!)
• FIFO? (throw out page that’s been in memory the longest) – fairness
• Would be nice if we could pick page whose next access is farthest in the future,

but we’d need to predict the future…
• LRU (least-recently-used)? Replace page that was accessed the longest time

ago.

15

Page Replacement
If we need another physical page but all memory is used, which page should we
throw out? How do we pick?
• Random? (works surprisingly well!)
• FIFO? (throw out page that’s been in memory the longest) – fairness
• Would be nice if we could pick page whose next access is farthest in the future,

but we’d need to predict the future…
• LRU (least-recently-used)? Replace page that was accessed the longest time

ago.

16

Least-Recently-Used
How could we know which page was the least-recently used?
• Store clock time for each page on each reference?
• Scan all pages to find oldest one?

Alternative: just find an old page, not necessarily the oldest.
The clock algorithm is one implementation of this idea.

Clock algorithm key idea: rotate through pages until we find one that hasn’t
been referenced since the last time we checked it. (“second chance algorithm”)

17

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 1

1 B 0 1 1

0 A 0 1 1

“reference” bit

The reference bit is
set to 1 whenever
that page is read or
written.Physical Pages Page Map

Let’s say the program
requests mapping page 5,

but we have no more
physical pages. This triggers

the clock algorithm.

18

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 1

1 B 0 1 1

0 A 0 1 1

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“We’ll leave this page
for now – but if we
come back and it’s
still unused, we’ll kick
it out.”

“reference” bit

Physical Pages Page Map

19

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 1

1 B 0 1 1

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

20

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 1

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

21

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 1

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

22

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 1 0

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

23

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

24

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 X X 0 X

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 1 0

Was this page accessed
recently (reference = 1)?
If not, this is the one we

should remove.

“This page hasn’t
been used since the
last time I checked –
let’s remove it.”

“reference” bit

Physical Pages Page Map

25

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 A 1 1 1

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 0 0

Now the clock algorithm
stops, and we remember
the position of the hand

for next time it runs.

“reference” bit

Physical Pages Page Map

26

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 A 1 1 1

4 X X 0 X

3 X X 0 X

2 C 1 1 1

1 B 0 1 1

0 A 0 0 0

Let’s say the program now
requests mapping page 4.
Some memory accesses

have also happened.

“reference” bit

Physical Pages Page Map

27

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 A 1 1 1

4 X X 0 X

3 X X 0 X

2 C 1 1 1

1 B 0 1 0

0 A 0 0 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

28

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 A 1 1 1

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 0 0

Was this page accessed
recently (reference = 1)?

If so, set reference = 0 and
continue.

“reference” bit

Physical Pages Page Map

29

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 1 0

5 A 1 1 1

4 X X 0 X

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 0 0

Was this page accessed
recently (reference = 1)?
If not, this is the one we

should remove.

“This page hasn’t
been used since the
last time I checked –
let’s remove it.”

“reference” bit

Physical Pages Page Map

30

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 0

6 D 1 0 0

5 A 1 1 1

4 D 1 1 1

3 X X 0 X

2 C 1 1 0

1 B 0 1 0

0 A 0 0 0

Now the clock algorithm
stops, and we remember
the position of the hand

for next time it runs.

“reference” bit

Physical Pages Page Map

31

Clock Algorithm
• We add a reference bit: set whenever a page is read or written
• When physical memory is full and we need to choose a page to remove, run

the clock algorithm.
• Clock hand “sweeps” over pages, rotating back to start if reaching the end.
• Every time the hand visits a page, we ask: “Has this page been referenced since

the last time the clock hand swept over it?”
• If YES (reference = 1): mark it as not referenced, and advance clock hand
• If NO (reference = 0): choose it for removal, advance clock hand, stop clock algorithm

• The clock hand position is saved for the next time the algorithm runs
• “Second chance” algorithm

32

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 0 0

5 A 1 1 1

4 D 1 1 1

3 A 1 0 0

2 C 1 1 0

1 B 0 1 1

0 A 0 0 0

Some time has passed,
pages were referenced,
and we now need a new

page. Which page will the
clock algorithm choose to

reuse this time? (hand
starts at E)

“reference” bit

Physical Pages Page Map

34

Clock Algorithm

A

B

C

D

E

Physical page # WR? PR? R

7 E 1 1 1

6 D 1 0 0

5 A 1 1 1

4 D 1 1 1

3 A 1 0 0

2 C 1 1 0

1 B 0 1 1

0 A 0 0 0

Some time has passed,
pages were referenced,
and we now need a new

page. Which page will the
clock algorithm choose to

reuse this time? (hand
starts at E)

“reference” bit

Physical Pages Page Map

36

Page Replacement
How does page replacement work if there are multiple processes running?
• Per-process replacement: each process has separate pool of physical pages,

and a page fault in a process can only replace one of its own pages. But how
many physical pages should each process get?
• Global replacement (most common): all pages from all processes in single

replacement pool. A page fault in one process can kick out a page in another
process.

37

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

38

OS Execution
How does virtual memory work when the OS runs?
Challenge: whenever we make a system call, we pass virtual addresses from our
process, or the OS may need to access data from the process’s virtual address
space.

Solution on most modern systems: OS has space in every process’s virtual
address space.

39

OS and User in Same Address Space

0

∞
Operating
System

Code

Data

Stack

Process 1

Operating
System

Code

Data

Stack

Process 2

OS in all
Address
Spaces

40

OS Execution
How does virtual memory work when the OS runs?
OS has space in every process’s virtual address space.

Problem: don’t want user program accessing OS pages.
Solution: new bit in page table that marks kernel-only pages. When in user
mode, not accessible, but accessible when OS is running.

41

Plan For Today
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

42

Virtual Memory
• Virtual memory is an example of “OS magic” – very powerful mechanism
• Virtualization: making one thing look like another – separation between

appearance and reality
• OS can manage physical memory how it wants (e.g. swap to disk), invisible to

user programs
Goals:
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared. Each

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing

43

CS111 Topic 4: Virtual Memory
Virtual Memory - How can one set of memory be shared among several
processes? How can the operating system manage access to a limited amount of
system memory?

Why is answering this question important?
• We can understand one of the most “magical” responsibilities of OSes –

making one set of memory appear as several!
• Exposes challenges of allowing multiple processes share memory while

remaining isolated
• Allows us to understand exactly what happens when a program accesses a

memory address
assign6: implement paging/demand paging system to translate addresses and
load/store memory contents for programs as needed.

44

Recap
• Recap: Demand Paging
• The Clock Algorithm
• What about when the OS runs?
• Virtual Memory summary

Lecture 24 takeaway: There
are many different policies
to choose a page to kick
out when memory is full.
The clock algorithm is one
approximation of LRU to
pick an old page to remove.

