
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 25
Trust + assign6

😷 masks recommended

2

Topic 4: Virtual Memory - How
can one set of memory be shared
among several processes? How
can the operating system manage
access to a limited amount of
system memory?

3

Learning Goals
• Reflect on aspects of trust, when we trust systems/others, and how we choose

to trust systems/others
• Learn about examples of trust / isolation not being upheld in systems

4

Plan For Today
• Recap: Virtual Memory
• Trust Case Study: Meltdown
• assign6

5

Plan For Today
• Recap: Virtual Memory
• Trust Case Study: Meltdown
• assign6

6

Virtual Memory
• Virtual memory is an example of “OS magic” – very powerful mechanism
• Virtualization: making one thing look like another – separation between

appearance and reality
• OS can manage physical memory how it wants (e.g. swap to disk), invisible to

user programs
Goals:
• Multitasking – allow multiple processes to be memory-resident at once
• Transparency – no process should need to know memory is shared. Each

must run regardless of the number and/or locations of processes in memory.
• Isolation – processes must not be able to corrupt each other
• Efficiency (both of CPU and memory) – shouldn’t be degraded badly by sharing

7

OS Execution
How does virtual memory work when the OS runs?
OS has space in every process’s virtual address space. (not duplicated – just
maps itself into each virtual address space). This way OS doesn’t have to
manually translate.

Problem: don’t want user program accessing OS pages.
Solution: new bit in page table that marks kernel-only pages. When in user
mode, not accessible, but accessible when OS is running.

8

OS and User in Same Address Space

0

∞
Operating
System

Code

Data

Stack

Process 1

Operating
System

Code

Data

Stack

Process 2

OS in all
Address
Spaces

9

Plan For Today
• Recap: Virtual Memory
• Trust Case Study: Meltdown
• assign6

10

Meltdown
Meltdown is a vulnerability publicly disclosed in 2018 that allows a program to
access kernel-only pages. (https://meltdownattack.com)

"Meltdown is a novel attack that allows overcoming memory isolation completely by
providing a simple way for any user process to read the entire kernel memory of the machine
it executes on, including all physical memory mapped in the kernel region.“

• Hardware-level vulnerability
• hardware fixes in later processors, patches in some earlier ones (though

concerns about performance penalties introduced), patched in OSes

Demo: https://www.youtube.com/watch?v=RbHbFkh6eeE

https://meltdownattack.com/
https://www.cnet.com/culture/intel-blocks-spectre-attacks-with-new-server-chips-this-year/
https://www.youtube.com/watch?v=RbHbFkh6eeE

11

Discussion Question #1
How do we decide how / whether to fix a potential vulnerability / violation of
trust? How do we evaluate tradeoffs in performance penalties, user
convenience, and other factors?

- E.g. what if vulnerability is unlikely or difficult to exploit?
- E.g. what if fix causes a performance penalty or other user inconvenience?
- E.g. do we make any fix opt-out or opt-in?

12

Discussion Question #2
With potential vulnerabilities / violations of trust, how, if at all, do we hold
parties accountable? Who holds them accountable? Examples of accountable
parties could include:

- Hardware designers (e.g. Intel)
- OS designers (e.g. Microsoft Windows, Google Android, Apple iOS)
- App developers
- Users

13

Trust Overview
• Who/what do we trust?
• How do we decide who/what to trust?
• What do we do when that trust is not upheld?

14

Recap
• Recap: Virtual Memory
• Trust Case Study: Meltdown
• assign6

Lecture 25 takeaway: The
Meltdown vulnerability is a
great case study in when
assumptions about systems
are not upheld. When
thinking about trust, we must
think about who we trust,
why, and what happens if that
trust is not upheld.

15

Plan For Today
• Recap: Virtual Memory
• Trust Case Study: Meltdown
• assign6

CS 111 Project 6:

Virtual Memory

Briana Berger & Anjali Ragupathi

CS 111 YEAH Hours: Project 6 (Virtual Memory) Slide 2

Overview
Part 1: implement paging (no demand paging -
assuming sufficient physical pages)

Part 2: add demand paging with the clock
algorithm (physical memory might fill up, and
pages must be swapped to disk)

● Write code in VirtualMemoryRegion to
manage a virtual address space and a page
map.

● Write code in PhysicalMemory to give
physical pages and run the clock algorithm
to kick pages to disk.

Virtual
Memory
Region

Physical
Memory

Slide 3

Classes

Virtual
Memory Physical

MemoryVirtualMemoryRegion:
• Allocates virtual memory
• Catch page faults
• Map/unmap pages
• Maintain a page map

PhysicalMemory:
• Manages pool of physical pages
• Runs clock algorithm

Disk

DiskRegion:
• Stores pages to disk (e.g.

swap)
• Loads pages from disk

(e.g. swap, code)

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 4

Assignment Structure
Slightly modified mechanism for implementing virtual memory (due to not
writing OS code):
● VirtualMemoryRegion models a virtual address space of a specified size
● Processes don’t request pages – we assume entire region is ok to access, but

not actually mapped until used

● Page fault if process accesses unmapped address – runs handle_fault, which
should add mapping.

● Accessing again in the same way doesn’t run your code – you just handle new
accesses.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 5

Helpful Assignment Types/Functions
VPage – type that represents start of a virtual page (really just a pointer)
PPage – type that represents start of a physical page (really just a pointer)

get_page_size() – returns page size in bytes (guaranteed to be power of 2)

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 6

Test Harness
test_harness.cc is the provided testing program – it can run script .txt files in a
special format to test your code. The script specifies what code of yours to run
and how. Each sanity check test is a script file.

./test_harness somescript.txt

Example: samples/scripts/one_page_read.txt:
Make a VMRegion with 1 page, and read it
1
INIT 1 1
READ 1 0

See spec for more details on script file format.
CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 7

Part 1: Paging
Milestone 1: Read-only pages -> get free ppage, map it to accessed vpage.
Milestone 2: Reading from disk -> does the mapped page have initial
contents on disk?
Milestone 3: Read/Write pages -> Process might write to a page
Milestone 4: Destructor -> Remove mappings, free physical pages

You will write code only in virtualmemoryregion.hh/cc.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 8

VirtualMemoryRegion
void handle_fault(char *fault_addr);

Private - called when a page fault occurs – passed virtual address that was accessed

~VirtualMemoryRegion()
Destructor – called when a region goes away (must unmap / free pages)

void map(VPage va, PPage pa, Prot prot);
Private - implemented for you – you must call when you want to add/update a mapping

void unmap(VPage va);
Private - implemented for you – you must call when you want to remove a mapping

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 9

VirtualMemoryRegion
Two already-initialized private instance variables:
PhysicalMemory *physical_memory_;

Use to get and return physical pages

DiskRegion *disk_;
Use to store and load saved data from disk

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 10

PhysicalMemory
PPage get_new_ppage(VPage mapped_page, VirtualMemoryRegion
*owner);

Call to get physical page

void page_free(PPage p)

Call to free physical page

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 11

DiskRegion
bool is_page_stored_on_disk(const VPage vpage);

Returns whether there is data for this virtual page stored on disk

void load_page_from_disk(const VPage vpage, PPage dst);

Reads data from disk for this virtual page into specified physical page

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 12

Protections
How do we know whether a page should be read-only or read/write?
● Set all new mappings to be read-only (PROT_READ)

● If process writes to that page, it will trigger another page fault; use that as an
indicator that the page should be read-write, and update its protections to read-
write (PROT_READ | PROT_WRITE)

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 13

Page Map
You will need to maintain a page map instance variable starting in milestone
3.
● Tracks information about mappings across calls to handle_fault
● Model as a map data structure (unordered_map) that contains only present

pages

● You will update the design of your page map over time as you implement more
functionality; only add what you need at each milestone.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 14

State of a VPage

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

destructor

destructor write

CS 111 YEAH Hours: Project 6 (Virtual Memory)

(1)

if first time access, page fault
(2)

if not first time access (Read) ->
read page contents

if not first time access (Write),
page fault and go to (3B)

set protection bit to
PROT_READ initially

(3A)

Update
protection bit

(3B)
Write contents to

page

(4B)

(4A)

Slide 15

Part 2: Demand Paging
Milestone 1: clock_sweep
Milestone 2: clock_should_remove
Milestone 3: clock_remove
Milestone 4: Dirty Pages
Milestone 5: Clock Algorithm

You will write more code in virtualmemoryregion.hh/cc and write code in
physicalmemory.hh/cc for the clock algorithm.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 16

The Clock Algorithm
If need PPage but all in use:
● Check if hand is pointing to removal

candidate
● Not candidate?

▪ Indicate swept over
▪ Advance hand, try next page

● Candidate? Kick out:
▪ Indicate kicked out
▪ Advance hand, stop

● Then get new PPage from poolPhysical Page
Frames (PPages)

Clock
Hand

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 17

VirtualMemoryRegion Part 2
void clock_sweep(VPage vp)

For clock algorithm, called when clock hand sweeps over page and marks unreferenced

bool clock_should_remove(VPage vp)

For clock algorithm, should return whether page is unreferenced

void clock_remove(VPage vp)

For clock algorithm, should mark page as kicked to disk

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 18

Referenced Bit
From lecture: when clock algorithm sweeps over a page, if referenced = 1,
set it to 0 and continue. If referenced = 0, pick it to swap to disk.

For this assignment, instead of referenced bit, we will use page protections.

PROT_READ or PROT_READ | PROT_WRITE means referenced = 1

PROT_NONE (new – means no read, no write) means referenced = 0

E.g. in clock_sweep, you must update the corresponding virtual page to have
protection PROT_NONE.

If the virtual page is accessed again, we get a page fault and we should upgrade
to PROT_READ.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 19

State of a VPage

PROT_NONE

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

clock sweep

destructor
clock sweep

destructor/clock remove

destructor

access

write

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 20

Dirty Pages
If a page is kicked out of memory, we need to swap it to disk only if it’s dirty
(has been modified since being mapped).

We will assume any page that the process attempts to write to is dirty.

NOTE: a PROT_NONE page could be dirty! E.g. page written to, then clock hand
sweeps over.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 21

Dirty Pages
If a page is kicked out of memory, we need to swap it to disk only if it’s dirty
(has been modified since being mapped).

We will assume any page that the process attempts to write to is dirty.

NOTE: a PROT_NONE page could be dirty! E.g. page written to, then clock hand
sweeps over.

How do we track dirty state?

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 22

Dirty Pages
If a page is kicked out of memory, we need to swap it to disk only if it’s dirty
(has been modified since being mapped).

We will assume any page that the process attempts to write to is dirty.

NOTE: a PROT_NONE page could be dirty! E.g. page written to, then clock hand
sweeps over.

How do we track dirty state? Hint: what stores information about the pages?

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 23

DiskRegion Part 2
void store_page_to_disk(const VPage vpage, const PPage src);

Stores physical page contents to disk, labeled as for the given virtual page.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 24

State of a VPage

- How do you keep track of whether a page is dirty?
▪ Hint: what stores information about the pages?

- In which states can the page be dirty?
- Which arrows check/update the dirty state?

PROT_NONE

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

clock sweep

destructor
clock sweep

destructor/clock remove

destructor

access

write

Slide 25

State of a VPage

- How do you keep track of whether a page is dirty?
▪ Hint: what stores information about the pages?

- In which states can the page be dirty?
- Which arrows check/update the dirty state?

▪ clock_remove: You write a page to disk if it's dirty.

PROT_NONE

PROT_READ

PROT_READ | PROT_WRITEunmapped

Initial

access

clock sweep

destructor
clock sweep

destructor/clock remove

destructor

access

write

Slide 26

Clock Algorithm
Write code in PhysicalMemory::get_new_ppage() to check if there are
more physical pages, and if not, run the clock algorithm to kick one out.

PhysicalMemory should maintain a fixed-size vector instance variable with
info about each physical page – needed to loop over pages in clock
algorithm.

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 27

Clock Algorithm
Write code in PhysicalMemory::get_new_ppage() to check if there are
more physical pages, and if not, run the clock algorithm to kick one out.

PhysicalMemory should maintain a fixed-size vector instance variable with
info about each physical page – needed to loop over pages in clock
algorithm.

- The index of the vector represents physical page numbers
- e.g. index 2 means physical page #2
- how do you get from PPage to physical page number?

- What information do you need for each physical page?

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 28

Clock Algorithm
Write code in PhysicalMemory::get_new_ppage() to check if there are
more physical pages, and if not, run the clock algorithm to kick one out.

PhysicalMemory should maintain a fixed-size vector instance variable with
info about each physical page – needed to loop over pages in clock
algorithm.

- The index of the vector represents physical page numbers
- e.g. index 2 means physical page #2
- how do you get from PPage to physical page number?

- What information do you need for each physical page?
- Hint: What two pieces information do we need to call functions like

clock_should_remove and likewise functions (owned by VirtualMemoryRegion)?

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 29

Clock Algorithm
Write code in PhysicalMemory::get_new_ppage() to check if there are
more physical pages, and if not, run the clock algorithm to kick one out.

PhysicalMemory should maintain a fixed-size vector instance variable with
info about each physical page – needed to loop over pages in clock
algorithm.

- The index of the vector represents physical page numbers
- e.g. index 2 means physical page #2
- how do you get from PPage to physical page number?

- What information do you need for each physical page?
- Hint: What two pieces information do we need to call functions like

clock_should_remove and likewise functions (owned by VirtualMemoryRegion)?
● What VM object owns the Ppage? What VM object is the mapping to the Ppage?

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 30

Clock Algorithm
Write code in PhysicalMemory::get_new_ppage() to check if there are
more physical pages, and if not, run the clock algorithm to kick one out.

PhysicalMemory can access “pool” of unallocated pages by:

std::size_t nfree()

Returns number of pages in unallocated pool
PPage page_alloc()

Call within get_new_ppage to get a fresh physical page if available
void page_free(PPage p)

Returns page to unallocated pool.
CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 31

Clock Algorithm
PPage get_new_ppage(VPage mapped_page, VirtualMemoryRegion
*owner) {

// check if pages in unallocated pool

// if not, run clock algorithm to free up page, you will call the
clock_ methods that you implemented previously.

// a.) If it's been accessed recently, mark as unaccessed and continue
// b.) Otherwise, throw it out - this should return a page to the pool

// now get a page from the unallocated pool

}

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 32

Final Tips
● Make sure to keep your page map updated
● Make sure to call map() whenever you change protections
● See spec for how to run in GDB
● write your own custom script files for testing (at least 2 required)

● There isn’t much code! Huge emphasis on reading everything and being
detail-oriented

CS 111 YEAH Hours: Project 6 (Virtual Memory)

Slide 33

Thank you!
Any questions?

CS 111 YEAH Hours: Project 6 (Virtual Memory)

