
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 26
Virtual Machines and Networking

😷 masks recommended

2

Extra Topic 1- How can we virtualize
the entire computer hardware so that we
can run multiple OSes on the same
machine?
Extra Topic 2- How can we write
programs that communicate over a
network with other programs?

3

Learning Goals
• Learn about virtual machines and how they build on our understanding of

virtualization to virtualize the entire hardware
• Understand the fundamentals of networking and how machines can

communicate

4

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

5

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

6

Extra Topic 1- How can we
virtualize the entire computer
hardware so that we can run
multiple OSes on the same
machine?

7

Virtual Machines
• A Virtual Machine is an abstraction of the entire computer hardware –

software enables us to run multiple OSes simultaneously, each thinking it has
its own machine!
• Virtual Machines even let us run an OS within an OS!
• A powerful application of the idea of virtualization – make one thing look like

something else, or many of them.
• Powerful use cases, enabling new features and functionality
• Demo

8

Virtual Machines
Why are Virtual Machines useful?
• Software development – test software on different OSes / versions on a single

machine
• Datacenters – rather than one application per machine (for isolation), we can

have one VM per application and run several per machine.
• Snapshots – we can save / continue / restore VM state!

• E.g. in a datacenter, migrate VMs between machines to balance load.
• E.g. in software development, run tests with same saved VM configuration –

reproducible tests

• Heavily used in cloud computing (e.g. Amazon Web Services, Google Cloud)
• Variations of this idea – called containers (e.g. Docker), like lightweight VMs
• How do these work?

9

Virtual Machines
Key idea – we need a more powerful version of a “process” that can run an
entire OS.
Regular processes can’t do privileged OS tasks nor access all hardware
functionality that an OS needs; it’s running in user mode!

10

Process Abstraction

Instruction
Set

Hardware

Registers

Physical
Memory

MMU
I/O Devices

Virtual Memory

System
Calls

Operating
System

11

Process Abstraction

Instruction
Set

Hardware

Registers

Physical
Memory

MMU
I/O Devices

Virtual Memory

System
Calls

Operating
System

Process

12

Process Abstraction

Instruction
Set

Hardware

Registers

Physical
Memory

MMU
I/O Devices

Virtual Memory

System
Calls

Operating
System

Virtual
Machine

13

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

14

Virtual Machines
A hypervisor is the software that enables this - interface for OSes to run.
• Can run just hypervisor on machine, and then 1 or more OSes on top of it
• Can run hypervisor on top of OS, running an OS within an OS

15

Hypervisor
• One possible approach – simulate everything in software (even instruction

execution). But too slow….
• We want to give the virtual machine access to the real hardware as much as

possible to improve performance.

Idea: if the OS does something that a normal process can do, just do as normal
on real hardware. For other things, have hypervisor step in and simulate.

16

Privileged Instructions
Example #1: what if the guest OS executes an instruction only OSes can run?
• Since virtual machine runs in user mode, these cause “illegal instruction” traps

into hypervisor
• Hypervisor catches these traps, simulates appropriate behavior

17

System Calls
Example #2: what if a program running in the guest OS makes a system call?
• By default, goes to host OS, not guest OS!
• Hypervisor traps, analyzes trapping instruction, simulates system call back to

guest OS

18

System Calls

kernel
user

Hypervisor

User Process

Guest OS
kernel
user

syscall

19

I/O Devices
Example #3: what if the guest OS interacts with I/O devices?
• Hypervisor configures guest OS devices such that it can intercept

communication
• Hypervisor can then handle it – e.g. when actual I/O operation completes,

hypervisor simulates interrupt into the guest OS
• This can be slow – one solution, paravirtualization, is to provide hypervisor-

specific functions that the guest OS can call (breaks abstraction!) for devices

20

Virtual Memory
What about memory access and management?
• The hypervisor gives guest OSes memory like processes get memory – virtual

addresses mapped to physical addresses behind the scenes.
• Mind-bending: the guest OS uses this virtual address space as its physical

memory, and it parcels that out to virtual address spaces in its own processes!

21

Virtualizing Virtual Memory
Guest

Virtual AS
Guest

“Physical” AS
Host

“Machine” AS
Guest MMU

(Virtual)

Guest Page
Maps

Virtual Machine Hardware

Machine Page
Maps

Machine MMU

22

Virtualizing Virtual Memory
• Three levels of memory!
• Implementation today – extended page maps (Intel support in recent years)

23

Virtual Machines
• A powerful application of the idea of virtualization – make one thing look like

something else, or many of them.
• Powerful use cases, enabling new features and functionality

24

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

25

Extra Topic 2- How can we write
programs that communicate over a
network with other programs?

26

Networking
• We have learned how to write programs that can communicate with other

programs via mechanisms like pipes.
• However, the communicating programs must both be running on the same

machine.
• Networking allows us to write code to send and receive data to/from a

program running on another machine.
• Many new questions, such as:

• how does the data get there?
• what functions do we use to send/receive data? (new system calls!)

27

Networking and CS144
Take CS144 if you’re interested in learning more about how networks work –
how data gets from one place to another. Questions addressed include:
• How is data packaged up to be sent over the network? (packets)
• How does my data make it to the destination in one piece? (packet loss, TCP)
• How do packets get routed across the network from one machine to another?

(diagram from CS144 slides)

28

Networking and CS142
Take CS142 if you’re interested in learning more about how to write web-based
programs that leverage networking functionality.

29

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

30

Networking Patterns
Most networked programs rely on a pattern called the "client-server model”
• This refers to two program "roles": clients and servers
• clients send requests to servers, who respond to those requests

• e.g. YouTube app (client) sends requests to the YouTube servers for what content to
display

• e.g. Web browser (client) sends requests to the server at a URL for what content to
display

• A server continually listens for incoming requests and sends responses back
("running a phone call center")
• A client sends a request to a server and does something with the response

("making a call")

31

Client-Server Model

Client Server

google.com, please!

Sure, here’s the content for that page.

32

Client-Server Model

Client Server

google.com, please!

Sure, here’s the content for that page.

33

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

34

Networking System Calls
If we’re a client program, how do we communicate with a server?
• Linux uses the same descriptor abstraction for network connections as it does

for files!
• You can open a connection to a program on another machine and you’ll get

back a socket descriptor number (using your file descriptor table)
• A socket is an endpoint of a single connection. It is represented as a descriptor

we can read from/write to, and we close it when we’re done.
• Like a pipe, but with only one descriptor, not two.
• Key idea: networking is remote function call and return
• New system calls: socket, connect, bind, listen

35

Networking System Calls
How do you specify who you want to talk to?
• IP address – the address of the machine you want to connect to
• Port number – the program on that machine you want to connect to

• Every listening program (e.g. server program) on a machine has a unique port number
• Like “virtual process IDs”

• A server program will run on a machine and be assigned a port number (there
are established port numbers for some common types of programs, e.g. HTTP
(internet traffic) is always port 80)
• A client program wishing to connect to that server must communicate with

that port number at that IP address.
• We commonly map names to IP addresses (e.g. www.google.com) to make it

easier to specify who we want to connect to.

http://www.google.com/

36

Plan For Today
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

37

Demo: Client Program
Let’s write our first program that sends a request to a server!
• Example: I am running a server on myth64.stanford.edu, port 12345 that can

tell you the current time. Whenever you connect to it, it will send back the
current time as text.
• Let’s write a client program that connects and prints out what the server says.
• Demo: time-client-descriptor.cc

Helper function to connect to a server (implemented via system calls):
// Opens a connection to a server
int createClientSocket(const string& host, unsigned short port);

38

Networking
Key Idea: there is no code in the client that is itself calculating the current time.
All that logic is in the server that the client connects to! Essentially “remote
function call and return”.

How do servers work?
• Constantly running, listening for incoming requests
• Use system calls to listen for requests and respond to them
• Multithreading is a powerful tool for helping servers respond to many

incoming requests in parallel!

39

Recap
• Topic 1: Virtual Machines
• The Hypervisor
• Topic 2: Networking
• Client-server
• Networking system calls
• Demo: Time Client

Next time: wrap-up / life after CS111

Lecture 26 takeaway:
Virtual machines are an
abstraction of the entire
machine that lets us run
multiple OSes. Networking
allows programs on
separate machines to
communicate.

