
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 3
Filesystem Design

😷 masks strongly
recommended

2

Reminder: PollEverywhere
• Visit pollev.stanford.edu to log in (or use the PollEverywhere app) and sign in

with your @stanford.edu email – NOT your personal email!

https://pollev.stanford.edu/

3

Announcements
• Remember to input your section preferences by 5PM Sat! Link is on the course

website (under “Sections”).
• Assign0 due Tues. 1/17 at 11:59PM PDT

• Clarification 1: for debugging question “which line in the file causes the crash”, we are
looking for the most specific line in that program that causes the crash.

• Clarification 2: fix should be changing 1 line (e.g., add 1 new line or change 1 line to be
something else). Don’t introduce any other issues like memory leaks!

4

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

5

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 1 Lecture 2 / Today
/ Lecture 4

Lecture 5 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

6

Learning Goals
• Explore the design of the Unix V6 filesystem
• Understand how we can use inodes to store and access file data
• Learn about how inodes can accommodate small and large files

7

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

8

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

9

Recap: Filesystems
We are imagining that we are filesystem implementers. A filesystem is the
portion of the OS that manages the disk.
• A hard drive (or, more commonly these days, flash storage) is persistent

storage – it can store data between power-offs.
• We have a hard disk that supports only two operations (reading a sector and

writing a sector), and need to layer complex filesystem operations (like
reading/writing/locating entire files) on top.
• A “block” is a filesystem storage unit (1 or more sectors)
• Both file payload data and metadata must be stored on disk

10

Some Possible Filesystem Designs
• Contiguous allocation allocates a file in one contiguous space
• Linked files allocates files by splitting them into blocks and having each block

store the location of the next block.
• Windows FAT is like linked files but stores the links in a “file allocation table” in

memory for faster access.
• Multi-level indexes store all block numbers for a file so we can quickly jump to

any point in the file (but how?). Example: Unix v6 Filesystem
• Many other designs possible – many use a tree-like structure

11

Filesystem Designs
• Internal Fragmentation: space allocated for a file is larger than what is

needed. A file may not take up all the space in the blocks it’s using. E.g. block
= 512 bytes, but file is only 300 bytes. (you could share blocks between
multiple files, but this gets complex)
• External Fragmentation (issue with contiguous allocation): no single space is

large enough to satisfy an allocation request, even though enough aggregate
free disk space is available
• Wait, how do we look up / find files? (we’ll talk more about this!)

12

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

13

Unix V6 Inodes
The Unix v6 filesystem stores inodes on disk together in the inode table for
quick access. An inode ("index node") is a grouping of data about a single file.
It’s stored on disk, but we can read it into memory when the file is open.
• inodes are stored in a reserved region starting at block 2 (block 0 is "boot

block" containing hard drive info, block 1 is "superblock" containing filesystem
info). Typically, at most 10% of the drive stores metadata.
• Inodes are 32 bytes big, and 1 block = 1 sector = 512 bytes, so 16 inodes/block.
• Filesystem goes from filename to inode number ("inumber") to file data.

14

Unix V6 Inodes
The Unix v6 filesystem stores inodes on disk together in the inode table for
quick access. An inode ("index node") is a grouping of data about a single file.
It’s stored on disk, but we can read it into memory when the file is open.
• inodes are stored in a reserved region starting at block 2 (block 0 is "boot

block" containing hard drive info, block 1 is "superblock" containing filesystem
info). Typically, at most 10% of the drive stores metadata.
• Each Unix v6 inode has space for 8 block numbers

15

Unix V6 Inodes
struct inode {
uint16_t i_mode; // bit vector of file

// type and permissions
uint8_t i_nlink; // number of references

// to file
uint8_t i_uid; // owner
uint8_t i_gid; // group of owner
uint8_t i_size0; // most significant byte

// of size
uint16_t i_size1; // lower two bytes of size

// (size is encoded in a
// three-byte number)

uint16_t i_addr[8]; // device addresses
// constituting file

uint16_t i_atime[2]; // access time
uint16_t i_mtime[2]; // modify time

};

For now, we just need
i_addr; that is an array of
8 block numbers, stored in
the inode. i_addr entries
are in order of file data,
but the blocks could be
scattered all over disk.
E.g. a file could have
i_addr = [12, 200, 56, …].

16

Unix V6 Inodes
Let's imagine that the hard disk creators provide software to let us
interface with the disk.

void readSector(size_t sectorNumber, void *data);
void writeSector(size_t sectorNumber, const void *data);

(Refresher: size_t is an unsigned number, void * is a generic pointer)

Let’s look at how we might access inodes in filesystem code.

17

Unix V6 Inodes
char buf[DISKIMG_SECTOR_SIZE];
readSector(2, buf); // always reads in 512 bytes

// now buf is filled with 512 bytes from block 2

18

Unix V6 Inodes
struct inode {
uint16_t i_addr[8]; // block numbers
...

};

struct inode inodes[512 / sizeof(struct inode)];
readSector(2, inodes);

// Loop over each inode in sector 2
for (size_t i = 0; i < sizeof(inodes) /

sizeof(inodes[0]); i++) {
printf("%\n", inodes[i].i_addr[0]); // first block num

}

19

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

20

Practice #1: Inodes
Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 600 bytes
i_addr = [122, 56, X, X, X, X, X, X]

• How many bytes of block 122 store file payload data?
• How many bytes of block 56 store file payload data?
Bytes 0-511 (512 bytes) reside within block 122, bytes 512-599 (88 bytes) within
block 56.

21

Practice #2: Inodes
Let's say we have an inode that looks like the following (remember 1 block = 1
sector = 512 bytes):

Inode:
size = 2000 bytes
i_addr = [56, 122, 45, 22, X, X, X, X]

• Which block number stores the index-1500th byte of the file?

Bytes 0-511 reside within block 56, bytes 512-1023 within block 122, bytes 1024-
1535 within block 45, and bytes 1536-1999 at the front of block 22.

22

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

23

File Size
Problem: with 8 block numbers per inode, the largest a file can be is 512 * 8 =
4096 bytes (~4KB). That definitely isn't realistic!
Let's say a file's payload is stored across 10 blocks:
45, 42, 15, 67, 125, 665, 467, 231, 162, 136

Assuming that the size of an inode is fixed, where can we put these block
numbers?

Solution: let's store them in a block, and then store that block's number in the
inode!

24

File Size
Let's say a file's payload is stored across 10 blocks:
451, 42, 15, 67, 125, 665, 467, 231, 162, 136

Solution: let's store them in a block, and then store that block's number in the
inode! This approach is called indirect addressing.

451, 42, 15,
67, 125, 665,

467, 231,
162,136

Block 450

The quick
brown fox

jumped over
the...

Block 451

25

Indirect Addressing
Design questions:
• Should we make all the block numbers in an inode use indirect addressing?
• Should we use this approach for all files, or just large ones?
Indirect addressing is useful but means that it takes more steps to get to the
data, and uses more blocks.

451, 42, 15,
67, 125, 665,

467, 231,
162,136

Block 450

The quick
brown fox

jumped over
the...

Block 451

26

Indirect Addressing
The Unix V6 filesystem uses singly-indirect addressing (blocks that store payload
block numbers) just for large files.
• check flag or size in inode to know whether it is a small file (direct addressing)

or large one (indirect addressing)
• If small, each block number in the inode stores payload data
• If large, first 7 block numbers in the inode stores block numbers for payload data
• 8th block number? we'll get to that :)

• Let's assume for now that an inode for a large file uses all 8 block numbers for
singly-indirect addressing. What is the largest file size this supports? Each
block number is 2 bytes big.

27

Indirect Addressing
Let's assume for now that an inode for a large file uses all 8 block numbers for
singly-indirect addressing. What is the largest file size this supports? Each block
number is 2 bytes big.

8 block numbers in an inode x
256 block numbers per singly-indirect block x
512 bytes per block
= ~1MB

28

Practice: Indirect Addressing
Let's say we have an inode with the following information (remember 1 block =
1 sector = 512 bytes, and block numbers are 2 bytes big):
Inode:
size = 200,000 bytes
i_addr = [56, 122, X, X, X, X, X, X]

Which singly-indirect block stores the block number holding the index-
150,000th byte of the file?

Bytes 0-131,071 reside within blocks whose block numbers are in block 56. Bytes
131,072 (256*512) - 199,999 reside within blocks whose block numbers are in
block 122.

29

Even Larger Files
Problem: even with singly-indirect addressing, the largest a file can be is 8 * 256
* 512 = 1,048,576 bytes (~1MB). That still isn't realistic!

Solution: let's use doubly-indirect addressing; store a block number for a block
that contains singly-indirect block numbers.

39

Plan For Today
• Recap: filesystems so far
• The Unix V6 Filesystem and Inodes
• Practice: reading file data
• Large files and Singly-Indirect Addressing
• Practice: singly-indirect addressing
• Large files and Doubly-Indirect Addressing

Next time: directories, file lookup and links

Lecture 3 takeaway: The
Unix v6 filesystem
represents small files by
storing direct block
numbers, and larger files by
using indirect addressing -
storing 7 singly-indirect and
1 doubly-indirect block
number.

