
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 4
Filesystem Design, Continued

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

😷 masks strongly
recommended

2

Announcements
• Sections start in person this week! Check the course website for your section

assignment.
• You can change your enrollment to any sections that have space available
• If you are e.g. sick, you can attend another section as a guest that week, but please

email the section TA to confirm there is space
• If you have exceptional circumstances that prevent you from attending any section

during a given week, please email the instructor

• Still working on room WiFi for lecture
• Assign0 due last night (Tues. night), late deadline Thurs.
• assign1 released! YEAH Hours (”Your Early Assignment Help”) announced

soon, happening later this week via Zoom.

3

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

4

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 1 Lecture 2 /
Lecture 3 / Today

Lecture 5 Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

5

Learning Goals
• Explore the design of the Unix V6 filesystem
• Understand the design of the Unix v6 filesystem in how it represents

directories
• Practice with the full process of going from file path to file data

6

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

7

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

8

Unix V6 Filesystem
• Inodes are stored starting at sector 2 on disk, and are numbered starting at 1
• There is 1 inode for each file
• An inode has space for up to 8 block numbers
• Those block numbers are used differently depending on whether the file is

“small” or “large”
• if ((inode.i_mode & ILARG) != 0) { // file is “large”

9

Small File Scheme
If the file is small, i_addr stores numbers of blocks that contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 341 33 124 … … … … …

File
Part 0

Block 341

File
Part 1

Block 33

File
Part 2

Block 124 To know how many of
the 8 numbers are
used, we can look at the
size stored in the inode.

10

Large File Scheme
If the file is large, i_addr stores 7 numbers of blocks that contain block numbers,
and those block numbers are of blocks that contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 444 22 … … … … … ???

126, 98, 7, 127,
1252, …

Block 444

File Part
0

Block 126

File Part
1

Block 98
1352, 567, 897, …

Block 22

File Part
256

Block 1352

… …

11

Even Larger Files
Problem: even with singly-indirect addressing, the largest a file can be is 8 * 256
* 512 = 1,048,576 bytes (~1MB). That still isn't realistic!

Solution: let's use doubly-indirect addressing; store a block number for a block
that contains singly-indirect block numbers.

12

Even Larger Files
Solution: let's use doubly-indirect addressing; store a block number for a block
that contains singly-indirect block numbers.

Allows even larger files, but data takes even more steps to access. How do we
employ this idea?

451, 42, 15,
67, 125, 665,

467, 231,
162,136

Block 450

55, 34, 12,
44,…

Block 451

The quick
brown fox

jumped over
the...

Block 55

13

Indirect Addressing
The Unix V6 filesystem uses indirect addressing (blocks that store payload block
numbers) just for large files.
• If small, each block number in the inode stores payload data
• If large, first 7 block numbers are singly-indirect
• NEW: If large (and if needed), 8th block number is doubly-

indirect (it refers to a block that stores singly-indirect block
numbers)

• Files only use the block numbers they need (depending on their size)
In other words; a file can be represented using at most 256 + 7 = 263 singly-
indirect blocks. The first seven are stored in the inode. The remaining 256 are
stored in a block whose block number is stored in the inode.

14

Large File Scheme
If the file is large, i_addr stores 7 numbers of blocks that contain block numbers,
and those block numbers are of blocks that contain payload data.

index 0 1 2 3 4 5 6 7

i_addr 444 22 34 792 168 976 2467 555

126, 98, 70, 127,
1252, …

Block 444

File Part
0

Block 126
1352, 567, …

Block 555

File Part
1,792

Block 897

… …
897, 4356, 6791,
…

Block 1352

15

Indirect Addressing
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

(7+256) singly-indirect block numbers total x
256 block numbers per singly-indirect block x
512 bytes per block

= ~34MB

16

Indirect Addressing
An inode for a large file stores 7 singly-indirect block numbers and 1 doubly-
indirect block number. What is the largest file size this supports? Each block
number is 2 bytes big.

OR:
(7 * 256 * 512) + (256 * 256 * 512) ~ 34MB
(singly indirect) + (doubly indirect)

Better! still not sufficient for today's standards, but perhaps in 1975. Moreover,
since block numbers are 2 bytes, we can number at most 2^16 - 1 = 65,535
blocks, meaning the entire filesystem can be at most 65,535 * 512 ~ 32MB.

17

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

19

Doubly-Indirect Addressing
What is the smallest file size (in bytes) that would require using the doubly-
indirect block to store its data?

Files up to (7 * 256 * 512) bytes are representable using just the 7 singly-
indirect blocks. Files of (7 * 256 * 512) + 1 or more bytes would need the
doubly-indirect block as well.

20

Doubly-Indirect Addressing
Assume we have a large file
with inumber 16. How do
we find the block containing
the start of its payload
data? How about the
remainder of its payload
data?

32 33 34

2

21

Doubly-Indirect Addressing
1. Go to block 26 and start

reading block numbers.
For the first number,
80, go to block 80 and
read the beginning of
the file (the first 512
bytes). Then go to block
41 for the next 512
bytes, etc.

32 33 34

2

22

Doubly-Indirect Addressing
2. After 256 blocks, go to
block 35, repeat the process.
Do this a total of 7 times, for
blocks 26, 35, 32, 50, 58, 22,
and 59, reading 1792 blocks. 32 33 34

2

23

Doubly-Indirect Addressing
3. Go to block 30, which is a
doubly-indirect block. From
there, go to block 87, which
is an indirect block. From
there, go to block 89, which
is the 1793rd (256*7 + 1)
block.

32 33 34

2

24

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

25

Now we understand how files
are stored. But how do

we find them?

26

The Directory Hierarchy
Filesystems usually support directories ("folders")
• A directory can contain files and more directories
• A directory is a file container. It needs to store what files/folders are contained

within it. It also has associated metadata.
• On Unix/Linux, all files live within the root directory, "/"
• We can specify the location of a file via the path to it from the root directory:

/classes/cs111/index.html

Common filesystem task: given a filepath, get the file's contents.

27

Key Idea: let's model a
directory as a file. We have

already designed support for
storing payloads and

metadata. Why not use it?

28

Directories as Files
A directory is a file container. It needs to store what files/folders are contained
within it. It also has associated metadata.

• Have an inode for each directory
• A directory's "payload data" is a list of info about the files it contains
• A directory's "metadata" is information about it such as its owner
• Inodes can store a field telling us whether something is a directory or file

We can layer support for directories right on top of our implementation for files!

29

Representing Directories
Design decision: the Unix V6 filesystem makes directory payloads contain a 16
byte entry for each file/folder that is in that directory, in no particular order.
• The first 14 bytes are the name (not necessarily null-terminated!)
• The last two bytes are the inumber

struct direntv6 {
uint16_t d_inumber;
char d_name[14];

};

30

Representing Directories
Given the inode for a directory, how could we find the inumber for a file it
contains called "b.txt"?

31

What about translating
from a filepath to an

inumber? How does that
work?

32

The Lookup Process

/classes/cs111/index.html

Start at the
root directory

33

The Lookup Process

/classes/cs111/index.html

In the root
directory,
find the
entry named
"classes".

34

The Lookup Process

/classes/cs111/index.html

In the "classes"
directory, find
the entry
named "cs111".

35

The Lookup Process

/classes/cs111/index.html

In the "cs111"
directory, find the
entry named
"index.html". Then
read its contents.

36

The Lookup Process
The root directory ("/") is set to have inumber 1. That way we always know
where to go to start traversing. (0 is reserved to mean "NULL" or "no inode").

http://stackoverflow.com/questions/2099121/why-do-inode-numbers-start-from-1-and-not-0

37

The Lookup Process

/classes/cs111/index.html

Go to inode with
inumber 1 (root
directory).

38

The Lookup Process

/classes/cs111/index.html

In its payload data,
look for the entry
“classes” and get
its inumber. Go to
that inode.

39

The Lookup Process

/classes/cs111/index.html

In its payload
data, look for
the entry
“cs111” and get
its inumber. Go
to that inode.

40

The Lookup Process

/classes/cs111/index.html

In its payload data,
look for the entry
“index.html” and get
its inumber. Go to that
inode and read in its
payload data.

41

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

42

Ex.: Finding “/local/files/fairytale.txt”
(small file)

1. go to inode 1. It's small.
We need to look in block
25 for the list of its entries.

2. Look in block 25 for
"local" -> inode 16.

3. Go to inode 16. It's
small. We need to look in
blocks 27/54 for the list of
its entries.

32 33 34

2

32

32

43

Ex.: Finding “/local/files/fairytale.txt”
(small file)

4. Look in block 27 for
"files" (and then 54 if
necessary) -> inode 32.

5. Go to inode 32. It's
small. We need to look in
block 32 for the list of its
entries.

6. Look in block 32 for
"fairytale.txt" -> inode 47.

32 33 34

32

32

2

44

Ex.: Finding “/local/files/fairytale.txt”
(small file)

7. go to inode 47. It's
small. We need to look in
blocks 80,89,87 in order for
its 1,057 bytes of payload
data.32 33 34

32

32

2

45

Ex.: Finding “/medfile” (large file)
1. go to inode 1. It's small.
We need to look in block
25 for the list of its entries.

2. Look in block 25 for
"medfile" -> inode 16.

3. Go to inode 16. It's
large. We need to look in
block 26 for the first 256
payload block numbers.

32 33 34

2

46

Ex.: Finding “/medfile” (large file)
4. Read through numbers
in block 26. First, go to
block 80 for the first 512
payload bytes. Then, go to
block 87 for the second 512
payload bytes.

5. After doing this 256
times, go to block 30 and
repeat. Then continue with
all remaining singly-indirect
blocks in the inode.

32 33 34

2

47

Ex.: Finding “/largefile” (large file)
Question: What is the
number of the block that
stores the first 512 bytes of
largefile?

32 33 34

2

48

Ex.: Finding “/largefile” (large file)
1. go to inode 1. It's small.
We need to look in block
25 for the list of its entries.

2. Look in block 25 for
"largefile" -> inode 16.

3. Go to inode 16. It's
large. For the first seven
block numbers, go to those
blocks and read their 256
block numbers to get
payload blocks.

32 33 34

2

49

Ex.: Finding “/largefile” (large file)
4. For the eighth block, go
to block 30. For each block
number, go to that block
and read in its block
numbers to get payload
blocks.

First payload block number
= 80.

32 33 34

2

50

Plan For Today
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

51

Assignment 1
• Assignment 1 due Thurs. 1/26
• Implement core functions to read from a Unix v6 filesystem disk!

• inode_iget -> fetch a specific inode
• inode_indexlookup -> fetch a specific payload block number
• file_getblock -> fetch a specified payload block
• directory_findname -> fetch directory entry with the given name
• pathname_lookup -> fetch inumber for the file with the given path

• “YEAH” Hours (Your Early Assignment Help Hours) to be announced soon!

56

Recap
• Recap: the Unix V6 Filesystem so far
• Practice: doubly-indirect addressing
• Directories and filename lookup
• Practice: filename lookup
• Summary

Next time: how do we interact with the
filesystem in our programs?

Lecture 4 takeaway: The
Unix V6 Filesystem
represents directories as
files, with payloads
containing directory entries.
Lookup begins at the root
directory. Filesystem
design is challenging, with
many possibilities and
tradeoffs!

