
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 5
File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

😷 masks strongly
recommended

2

Topic 1: Filesystems - How can
we design filesystems to manage files
on disk, and what are the tradeoffs
inherent in designing them? How
can we interact with the filesystem in
our programs?

3

CS111 Topic 1: Filesystems

Filesystems
introduction and

design

Case study: Unix
V6 Filesystem

Filesystem
System calls and
file descriptors

Crash recovery

Lecture 1 Lecture 2-4 Today Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!

4

Learning Goals
• Evaluate the tradeoffs of the Unix v6 Filesystem design overall
• Learn about the open, close, read and write functions that let us interact with

files
• Get familiar writing programs that read, write and create files
• Learn what the operating system manages for us so that we can interact with

files

5

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

6

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

7

Recap From Last Time
• Small files have up to 8 direct block numbers stored in their inode
• Large files have up to 7 singly-indirect and 1 doubly-indirect block number

stored in their inode
• Directories are “just files” and are layered on top of files. Directories store

directory entries, which contain info about each file/folder directly within that
directory. Note: name is at most 14 bytes, which may not be null terminated!
• The lookup process traverses through each directory in the path until we reach

the file we’re looking for (or don’t find it)

8

Hard Links
With the directory entry structure, it's possible for two different filenames to
resolve to the same inumber. Why is this useful?
• You could have multiple copies of a file without duplicating contents, and if

you change one you change all of them.

On linux: ln originalFile newFile creates newFile, mapping it to the
same inumber as originalFile
• The i_nlink inode field stores the number of directory entries that point to that

inode. Files are deleted when i_nlink = 0 and no programs are using it.
• This is called a hard link. All normal files in Unix (and Linux) are hard links, and

there’s no way to distinguish which one is the “real” file, since both are real!

9

Hard Links
• Example: you create a library, and others want to use it, so they can make a

hard link to it to avoid copying it
• If you delete the library and make a new version of it, the others will still have

access to it
• Downside: links to directories not allowed (could cause circular references)
• Downside: cannot link across filesystems (inumbers not unique)

10

Soft Links
A soft (“symbolic”) link is another way to link one file to another, and allows
linking to directories, and allows linking across filesystems.
• Instead of sharing an inode, the link file stores the path to the original file as its

payload data, and the inode uses a field to track that it is a symbolic link
• When opening, modifying or using that file, it refers to the linked file

On linux: ln -s originalFile newFile creates a symbolic link newFile
linking to originalFile
• Soft links can ”break” if the file they refer to no longer exists
• Example: samples/ directory in CS111 assignments

11

Demo: Hard/Soft Links

12

Multi-level Indexes
The Unix V6 filesystem (from 1975) is an example of the “multi-level index”
filesystem design. There are many alternative designs that could be used –
some alterations you could propose might be:
• What if the block size was different?
• What if inodes stored a different number of block numbers?
• What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
• 4KB block size
• Inodes store 14 block numbers
• First 12 block numbers always direct, 13th always singly indirect, 14th always

doubly indirect (no small vs. large schemes)

13

Other Filesystem Design Ideas
Larger block size? Improves efficiency of I/O and inodes but worsens internal
fragmentation. Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes
• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
• The last block in a file can be a fragment (0-7 fragments)
• One large block can hold fragments from multiple files
• Get the time efficiency benefit of larger blocks, but the internal fragmentation

benefit of smaller blocks (small files can use fragments)

14

Filesystem Techniques Today
• Filesystem design is a hard problem! Tradeoffs, challenges with large and small

files.
• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap,

internal fragmentation doesn’t matter as much
• Reallocate files as blocks grow – initially allocate blocks one at a time, but

when a file reaches a certain size, reallocate blocks looking for large contiguous
clusters
• ext4 is a popular current Linux filesystem – you may notice similarities!
• NTFS (replacement for FAT) is the current Windows filesystem
• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem

26

Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .

27

OS vs. User Mode
• The operating system runs code in a privileged “kernel mode” where it can do

things and access data that regular user programs cannot. E.g. only OS can call
readSector.
• System tracks whether it is in “user mode” or “kernel mode”
• The OS provides public functions that we can call in our user programs –

system calls. When these functions are called, it switches over to “kernel
mode”.

28

System Calls
Functions to interact with the operating system are part of a group of functions
called system calls.
• A system call is a public function provided by the operating system.
• The operating system handles these tasks because they require special

privileges that we do not have in our programs. When a system call runs, it
runs in kernel mode, and we switch back to user mode when it’s done.
• The operating system kernel runs the code for a system call, completely

isolating the system-level interaction from your (potentially harmful) program.
• We are going to examine the system calls for interacting with files. When

writing production code, you will often use higher-level methods that build on
these (like C++ streams or FILE *), but let's see how they work!

29

open()

Call open to open a file:

int open(const char *pathname, int flags);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list). You must include exactly one
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only),
O_RDWR (read and write). These say how you will use the file in this program.
Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it.

30

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

31

open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including
O_CREAT as one of the flags. You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch,
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism

32

File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that file in

this program.
• Each program has its own file descriptors
• When you wish to refer to the file (e.g. read from it, write to it) you must

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)
• The OS remembers information associated with each of your file descriptors,

like where in the file you currently are (if reading/writing)

33

close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)

34

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

35

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

Open the file
to be

written to

touch.c

36

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If the file
doesn’t exist,

create it

touch.c

37

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If it does
exist, throw

an error

touch.c

38

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If we create a new file, it should
have these permissions (don’t

worry about specifics for now)

touch.c

39

Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c

54

Recap
• Recap: filesystem design and modern

filesystems
• Interacting with the filesystem in user

programs
• System calls
• open() and close()
• read() and write()
• Practice: copying files

Next time: how can we design a
filesystem that is resilient in the event of
a system crash?

Lecture 5 takeaway: System
calls are functions provided
by the operating system to do
tasks we cannot do ourselves.
open/close/read/write are
system calls that work via file
descriptors to create, read
from and write to files.

