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CS111, Lecture 5
File Descriptors and System Calls

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Sections 13.1-13.2

😷 masks strongly 
recommended
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Topic 1: Filesystems - How can 
we design filesystems to manage files 
on disk, and what are the tradeoffs 
inherent in designing them?  How 
can we interact with the filesystem in 
our programs?
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CS111 Topic 1: Filesystems

Filesystems 
introduction and 

design

Case study: Unix 
V6 Filesystem

Filesystem 
System calls and 
file descriptors

Crash recovery

Lecture 1 Lecture 2-4 Today Lectures 6-7

assign1: implement portions of the Unix v6 filesystem!
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Learning Goals
• Evaluate the tradeoffs of the Unix v6 Filesystem design overall
• Learn about the open, close, read and write functions that let us interact with 

files
• Get familiar writing programs that read, write and create files
• Learn what the operating system manages for us so that we can interact with 

files
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Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .
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Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .
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Recap From Last Time
• Small files have up to 8 direct block numbers stored in their inode
• Large files have up to 7 singly-indirect and 1 doubly-indirect block number 

stored in their inode
• Directories are “just files” and are layered on top of files.  Directories store 

directory entries, which contain info about each file/folder directly within that 
directory.  Note: name is at most 14 bytes, which may not be null terminated!
• The lookup process traverses through each directory in the path until we reach 

the file we’re looking for (or don’t find it)
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Hard Links
With the directory entry structure, it's possible for two different filenames to 
resolve to the same inumber.  Why is this useful?  
• You could have multiple copies of a file without duplicating contents, and if 

you change one you change all of them.

On linux: ln originalFile newFile creates newFile, mapping it to the 
same inumber as originalFile
• The i_nlink inode field stores the number of directory entries that point to that 

inode.  Files are deleted when i_nlink = 0 and no programs are using it.
• This is called a hard link. All normal files in Unix (and Linux) are hard links, and 

there’s no way to distinguish which one is the “real” file, since both are real!
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Hard Links
• Example: you create a library, and others want to use it, so they can make a 

hard link to it to avoid copying it
• If you delete the library and make a new version of it, the others will still have 

access to it
• Downside: links to directories not allowed (could cause circular references)
• Downside: cannot link across filesystems (inumbers not unique)
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Soft Links
A soft (“symbolic”) link is another way to link one file to another, and allows 
linking to directories, and allows linking across filesystems.
• Instead of sharing an inode, the link file stores the path to the original file as its 

payload data, and the inode uses a field to track that it is a symbolic link
• When opening, modifying or using that file, it refers to the linked file

On linux: ln -s originalFile newFile creates a symbolic link newFile
linking to originalFile
• Soft links can ”break” if the file they refer to no longer exists
• Example: samples/ directory in CS111 assignments
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Demo: Hard/Soft Links
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Multi-level Indexes
The Unix V6 filesystem (from 1975) is an example of the “multi-level index” 
filesystem design.  There are many alternative designs that could be used –
some alterations you could propose might be:
• What if the block size was different?
• What if inodes stored a different number of block numbers?
• What if the file size scheme (small / large) worked differently?

Example: 4.3 BSD Unix filesystem (evolutionary descendent of V6)
• 4KB block size
• Inodes store 14 block numbers
• First 12 block numbers always direct, 13th always singly indirect, 14th always 

doubly indirect (no small vs. large schemes)
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Other Filesystem Design Ideas
Larger block size?  Improves efficiency of I/O and inodes but worsens internal 
fragmentation.  Generally: challenges with both large and small files coexisting.

One idea: multiple block sizes
• Large blocks are 4KB, fragments are 512 bytes (8 fragments fit in a block)
• The last block in a file can be a fragment (0-7 fragments)
• One large block can hold fragments from multiple files
• Get the time efficiency benefit of larger blocks, but the internal fragmentation 

benefit of smaller blocks (small files can use fragments)
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Filesystem Techniques Today
• Filesystem design is a hard problem!  Tradeoffs, challenges with large and small 

files.
• Even larger block sizes (16KB large blocks, 2KB fragments) – disk space cheap, 

internal fragmentation doesn’t matter as much
• Reallocate files as blocks grow – initially allocate blocks one at a time, but 

when a file reaches a certain size, reallocate blocks looking for large contiguous 
clusters
• ext4 is a popular current Linux filesystem – you may notice similarities!
• NTFS (replacement for FAT) is the current Windows filesystem
• APFS (“Apple Filesystem”) is the filesystem for Apple devices

https://opensource.com/article/17/5/introduction-ext4-filesystem
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Plan For Today
• Recap: filesystem design and modern filesystems
• Interacting with the filesystem in user programs

• System calls
• open() and close()
• read() and write()
• Practice: copying files

cp -r /afs/ir/class/cs111/lecture-code/lect5 .
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OS vs. User Mode
• The operating system runs code in a privileged “kernel mode” where it can do 

things and access data that regular user programs cannot.  E.g. only OS can call 
readSector.
• System tracks whether it is in “user mode” or “kernel mode”
• The OS provides public functions that we can call in our user programs –

system calls.  When these functions are called, it switches over to “kernel 
mode”.
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System Calls
Functions to interact with the operating system are part of a group of functions 
called system calls.
• A system call is a public function provided by the operating system.
• The operating system handles these tasks because they require special 

privileges that we do not have in our programs.  When a system call runs, it 
runs in kernel mode, and we switch back to user mode when it’s done.
• The operating system kernel runs the code for a system call, completely 

isolating the system-level interaction from your (potentially harmful) program.
• We are going to examine the system calls for interacting with files. When 

writing production code, you will often use higher-level methods that build on 
these (like C++ streams or FILE *), but let's see how they work!
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open()

Call open to open a file:

int open(const char *pathname, int flags);

• pathname: the path to the file you wish to open
• flags: a bitwise OR of options specifying the behavior for opening the file
• returns a file descriptor representing the opened file, or -1 on error

Many possible flags (see manual page for full list).  You must include exactly one 
of the following flags: O_RDONLY (read-only), O_WRONLY (write-only), 
O_RDWR (read and write).  These say how you will use the file in this program.
Another useful flag: O_TRUNC means if the file exists already, truncate (clear) it.
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open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including 
O_CREAT as one of the flags.  You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file
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open()

Call open to open a file:

int open(const char *pathname, int flags, mode_t mode);

You can also create a new file if the specified file doesn’t exist, by including 
O_CREAT as one of the flags.  You must also specify a third mode parameter.
• mode: the permissions to attempt to set for a created file

Another useful flag: O_EXCL, which says the file must be created from scratch, 
and to fail if the file already exists.

Aside: how are there multiple signatures for open in C? See here.

https://stackoverflow.com/questions/15151396/open-system-call-polymorphism
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File Descriptors
A file descriptor is like a "ticket number" representing your currently-open file.
• It is a unique number assigned by the operating system to refer to that file in 

this program.
• Each program has its own file descriptors
• When you wish to refer to the file (e.g. read from it, write to it) you must 

provide the file descriptor.
• file descriptors are assigned in ascending order (next FD is lowest unused)
• The OS remembers information associated with each of your file descriptors, 

like where in the file you currently are (if reading/writing)
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close()

Call close to close a file when you’re done with it:

int close(int fd);

• fd: the file descriptor you'd like to close.

It's important to close files when you are done with them to preserve system 
resources.
• You can use valgrind to check if you forgot to close any files. (--track-fds=yes)
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Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c
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Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

Open the file 
to be 

written to

touch.c
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Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If the file 
doesn’t exist, 

create it

touch.c
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Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If it does 
exist, throw 

an error

touch.c
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Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

If we create a new file, it should 
have these permissions (don’t 

worry about specifics for now)

touch.c
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Example: Creating a File (touch)
// ./touch newfile.txt
int main(int argc, char *argv[]) {
int fd = open(argv[1], O_WRONLY | O_CREAT | O_EXCL, 0644);

// If an error occurs, print out an error message
if (fd == -1) {
printf("There was a problem creating \"%s\"!\n", argv[1]);
return 1;

}

// Close the file now that we are done with it
close(fd);
return 0;

}

touch.c
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Recap
• Recap: filesystem design and modern 

filesystems
• Interacting with the filesystem in user 

programs
• System calls
• open() and close()
• read() and write()
• Practice: copying files

Next time: how can we design a 
filesystem that is resilient in the event of 
a system crash?

Lecture 5 takeaway: System 
calls are functions provided 
by the operating system to do 
tasks we cannot do ourselves.  
open/close/read/write are 
system calls that work via file 
descriptors to create, read 
from and write to files.


