
CS111 Final Exam Reference Sheet

Filesystem Access
// specify one of O_RDONLY, O_WRONLY, O_RDWR in flags
// O_TRUNC clears existing file, O_CREAT creates if doesn’t exist,
// O_EXCL fails if already exists
int open(const char *pathname, int flags); // returns descriptor
int open(const char *pathname, int flags, mode_t mode); // also sets permissions

int close(int fd); // ignore retval
int dup2(int oldfd, int newfd); // ignore retval
int pipe(int fds[]); // ignore retval
int pipe2(int fds[], int flags); // ignore retval, flags typically O_CLOEXEC
ssize_t read(int fd, void *buf, size_t count); // returns bytes read into buf
ssize_t write(int fd, const void *buf, size_t count); // returns bytes written

#define STDIN_FILENO 0
#define STDOUT_FILENO 1
#define STDERR_FILENO 2

Multiprocessing
pid_t fork();
pid_t waitpid(pid_t pid, int *status, int flags);
int execvp(const char *path, char *argv[]); // ignore retval
#define WIFEXITED(status) // macro
#define WEXITSTATUS(status) // macro

Multithreading
class thread {
public:

thread(...); // first argument is function, its args come afterwards
 void join();
};

Use ref() in the thread constructor to pass args by reference

// create unique lock
unique_lock<mutex> myUL(mutexName);

class mutex {
public:

mutex();
void lock();
void unlock();

};

class condition_variable_any {
public:

void wait(mutex& m);
void notify_one();
void notify_all();

};

C++ Standard Library
template <typename T>
class vector {
public:
 size_t size() const;
 void push_back(const T& elem);
 T& operator[](size_t i);
};

template <typename T>
class queue {
public:
 size_t size() const;
 bool empty() const;
 void push(const T& elem);
 T& front();
 void pop();
};

template <typename Key, typename Value>
class unordered_map {
public:
 size_t size() const;
 Value& operator[](const Key& key);
 size_t erase(const Key& key); // ignore retval
};

// iterating through a map
for (auto it = myMap.begin(); it != myMap.end(); ++it) {
 // it->first is key, it->second is value
}

// check if key is in map
if (myMap.find(key) != myMap.end()) {
 // key is in map
}

