
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 12
Multithreading Introduction

Optional reading:
Operating Systems: Principles and Practice (2nd Edition): Chapter 4 and

Chapter 5 up through Section 5.1

😷 masks strongly
recommended

2

Announcements
• Assign1 being graded, grades will be posted later this week
• Due to WiFi issues, lecture attendance policy being updated / re-evaluated,

updates coming soon!

3

Recap: Pipes and I/O Redirection
Pipes are sets of file descriptors that allow us to communicate across processes.
• Processes can share these file descriptors because they are copied on fork()
• File descriptors 0,1 and 2 are special and assumed to represent STDIN, STDOUT

and STDERR
• If we change those file descriptors to point to other resources, we can redirect

STDIN/STDOUT/STDERR to be something else without the program knowing!
• Pipes are how terminal support for piping and redirection (command1 |

command2 and command1 > file.txt) are implemented!

4

Redirecting Process I/O
Idea: what happens if we change a special FD to point somewhere else?
Could we do this with a pipe?

This is how piping works in the terminal! And the executables don’t know
they are using a pipe.

5

Redirecting Process I/O
Stepping stone: our first goal is to write code that spawns another program and
sends data to its STDIN via a separate file descriptor.

This is useful because our program can now programmatically run another
procedure and feed it input (even if we don’t have the code for it).

6

subprocess
Implementing subprocess:
1. Create a pipe
2. Spawn a child process
3. That child process changes its STDIN to be the pipe read end (how?)
4. That child process calls execvp to run the specified command
5. We return the pipe write end to the caller along with the child’s PID. That

caller can write to the file descriptor, which appears to the child as its STDIN

execvp consumes the process but leaves the file descriptor table in tact!

7

subprocess
subprocess_t subprocess(const char *command) {

// this line parses the command into a pipeline like is done for you on assign3
pipeline p(command);

// Make a pipe
int fds[2];
pipe(fds);

pid_t pidOrZero = fork();
if (pidOrZero == 0) {

// We are not writing to the pipe, only reading from it
close(fds[1]);

// Duplicate the read end of the pipe into STDIN
dup2(fds[0], STDIN_FILENO);
close(fds[0]);

// Run the command
execvp(p.commands[0].argv[0], p.commands[0].argv);
exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

}
...

8

subprocess
subprocess_t subprocess(const char *command) {

// this line parses the command into a pipeline like is done for you on assign3
pipeline p(command);

// Make a pipe
int fds[2];
pipe(fds);

pid_t pidOrZero = fork();
if (pidOrZero == 0) {

...
}

close(fds[0]);
subprocess_t returnStruct;
returnStruct.pid = pidOrZero;
returnStruct.supplyfd = fds[1];
return returnStruct;

}
What if we wanted to read the
output of the child instead of
feeding input to the child?

9

subprocess
subprocess_t subprocess(const char *command) {

// this line parses the command into a pipeline like is done for you on assign3
pipeline p(command);

// Make a pipe
int fds[2];
pipe(fds);

pid_t pidOrZero = fork();
if (pidOrZero == 0) {

// We are not reading from the pipe, only writing to it
close(fds[0]);

// Duplicate the read end of the pipe into STDIN
dup2(fds[1], STDOUT_FILENO);
close(fds[1]);

// Run the command
execvp(p.commands[0].argv[0], p.commands[0].argv);
exitIf(true, kExecFailed, stderr, "execvp failed to invoke this: %s.\n", command);

}
...

10

subprocess
subprocess_t subprocess(const char *command) {

// this line parses the command into a pipeline like is done for you on assign3
pipeline p(command);

// Make a pipe
int fds[2];
pipe(fds);

pid_t pidOrZero = fork();
if (pidOrZero == 0) {

...
}

close(fds[1]);
subprocess_t returnStruct;
returnStruct.pid = pidOrZero;
returnStruct.ingestfd = fds[0];
return returnStruct;

}

Check out subprocess-dual.cc in
the lecture 11 code for an example
subprocess implementation that
does both input and output rewiring.

11

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

12

CS111 Topic 3: Multithreading
Multithreading - How can we have concurrency within a single process? How
does the operating system support this?

Why is answering this question important?
• Helps us understand how a single process can do multiple things at the same

time, a technique used in various software (today)
• Provides insight into race conditions, unpredictable orderings that can cause

undesirable behavior, and how to fix them (next few lectures)
• Allows us to see how the OS schedules and switches between tasks (after

midterm)

assign4: implement several multithreaded programs while eliminating race conditions

13

CS111 Topic 3: Multithreading, Part 1

Multithreading
Introduction

Race
conditions and

locks

Locks and
Condition
Variables

Multithreading
Patterns

This Lecture Next Lecture Lecture 14 Lecture 15

assign4: implement several multithreaded programs while eliminating race conditions!

14

Learning Goals
• Learn about how threads allow for concurrency within a single process
• Understand the differences between threads and processes
• Discover some of the pitfalls of threads sharing the same virtual address space

15

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .

16

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .

17

From Processes to Threads
Multiprocessing has allowed us to spawn other processes to do tasks or run
programs
• Powerful; can execute/wait on other programs, secure (separate memory

space), communicate with pipes and signals
• But limited; interprocess communication is cumbersome, hard to share

data/coordinate
• Is there another way we can have concurrency beyond multiprocessing that

handles these tradeoffs differently?

18

From Processes to Threads
We can have concurrency within a single process using threads: independent
execution sequences within a single process.
• Threads let us run multiple functions in our program concurrently
• Multithreading is common to parallelize tasks, especially on multiple cores
• In C++: spawn a thread using thread() and the thread variable type and specify

what function you want the thread to execute (optionally passing parameters!)
• Each thread operates within the same process, so they share a virtual address

space (!) (globals, heap, pass by reference, etc.)
• The processes's stack segment is divided into a "ministack" for each thread.
• In the OS, threads are actually the unit of concurrency, not processes (more on

this later)
• Many similarities between threads and processes, but some key differences

19

Threads vs. Processes
Processes:
• isolate virtual address spaces (good: security and stability, bad: harder to share

info)
• can run external programs easily (fork-exec) (good)
• harder to coordinate multiple tasks within the same program (bad)
Threads:
• share virtual address space (bad: security and stability, good: easier to share

info)
• can't run external programs easily (bad)
• easier to coordinate multiple tasks within the same program (good)

20

Threads
Threads are a much more common approach to doing tasks in parallel on a
system because of easier data sharing and lighter weight creation. Many
modern software programs use multithreading:
• Mobile apps may spawn a background thread to download a web resource

while allowing another thread to handle user input (e.g. taps, swipes)
• A web server may spawn threads to handle incoming requests in parallel
• Your computer’s task manager can show you how many threads a process is

using

21

C++ Thread
A thread object can be spawned to run the specified function with the given
arguments.

thread myThread(myFunc, arg1, arg2, ...);

• myFunc: the function the thread should execute asynchronously
• args: a list of arguments (any length, or none) to pass to the function upon

execution
• myFunc’s function's return value is ignored (use pass by reference instead)
• Once initialized with this constructor, the thread may execute at any time!

22

C++ Thread
To wait on a thread to finish, use the .join() method:

thread myThread(myFunc, arg1, arg2);
...
// Wait for thread to finish (blocks)
myThread.join();

For multiple threads, we must wait on a specific thread one at a time:

thread friends[5];
...
for (int i = 0; i < 5; i++) {

friends[i].join();
}

23

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .

24

Our First Threads Program
static void greeting(size_t i) {

cout << "Hello, world! I am thread " << i << endl;
}

...

friends.cc

25

Our First Threads Program
static const size_t kNumFriends = 6;

int main(int argc, char *argv[]) {
cout << "Let's hear from " << kNumFriends << " threads." << endl;

thread friends[kNumFriends];
for (size_t i = 0; i < kNumFriends; i++) {

friends[i] = thread(greeting, i);
}

// Wait for threads
for (size_t i = 0; i < kNumFriends; i++) {

friends[i].join();
}

cout << "Everyone's said hello!" << endl;
return 0;

}

26

C++ Thread
We can make an array of threads as follows:

// declare array of empty thread handles
thread friends[5];

// Spawn threads
for (size_t i = 0; i < 5; i++) {

friends[i] = thread(myFunc, arg1, arg2);
}

We can also initialize an array of threads as follows (note the loop by reference):

thread friends[5];
for (thread& currFriend : friends) {

currFriend = thread(myFunc, arg1, arg2);
}

27

Plan For Today
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

cp -r /afs/ir/class/cs111/lecture-code/lect12 .

28

Race Conditions
• Like with processes, threads can execute in unpredictable orderings.
• A race condition is an unpredictable ordering of events where some orderings

may cause undesired behavior.
• A thread-safe function is one that will always execute correctly, even when

called concurrently from multiple threads.
• printf is thread-safe, but operator<< is not. This means e.g. cout statements

could get interleaved!
• To avoid this, use oslock and osunlock (custom CS111 functions - #include

"ostreamlock.h") around streams. They ensure at most one thread has
permission to write into a stream at any one time.

cout << oslock << "Hello, world!" << endl << osunlock;

29

Our First Threads Program
static void greeting(size_t i) {

cout << oslock << "Hello, world! I am thread " << i << endl <<
osunlock;
}

...

friends.cc

56

Recap
• Introducing multithreading
• Example: greeting friends
• Race conditions
• Threads share memory
• Example: selling tickets

Next time: introducing mutexes

cp -r /afs/ir/class/cs111/lecture-code/lect12 .

Lecture 12 takeaway: A
process can have multiple
threads executing tasks
simultaneously. Threads share
the same virtual address space,
and race conditions can cause
unintended problems!

