CS111, Lecture 19

Preemption and Implementing Locks

— This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
& :> Creative Commons Attribution 2.5 License. All rights reserved.
N 4

- m a S kS re CO m m e n d e\d—) Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading, Part 2

Scheduling and Preemption and
Preemption, Implementing
Continued Locks

Scheduling and
Dispatching

Lecture 17 Lecture 18 This Lecture

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

 Compare tradeoffs between various approaches to scheduling

* Learn about the assign5 infrastructure and how to implement a dispatcher
with preemption

» See how our understanding of thread dispatching/scheduling allows us to
implement locks

Plan For Today

* Recap and continuing: Scheduling
* Preemption and Interrupts
* Implementing Locks

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 5

Plan For Today

* Recap and continuing: Scheduling

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 6

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

We discussed 2 main designs so far:

1. First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add
threads to the back, run thread from front until completion or blocking.

2. Round Robin: run thread for one time slice, then add to back of queue if
wants more time

Scheduling Algorithms

How do we decide whether a scheduling algorithm is good?

* Minimize response time (time to useful result)
» e.g. keystroke -> key appearing, or “make” -> program compiled
* Assume useful result is when the thread blocks or completes

e Use resources efficiently

* keep cores + disks busy
* low overhead (minimize context switches)

* Fairness (e.g. with many users, or even many jobs for one user)

Comparing FCFS/RR: Scenario 1

Ready Queue

C B A
2ms Tims | 100ms

Comparing FCFS/RR: Scenario 1

Ready Queue

C B A
2ms Tms | 100ms

FIFO

Avg:
101.3

A B| C

>

time 100 101 103

10

Comparing FCFS/RR: Scenario 1

Is RR always
better than FCFS? Ready Queue
C B A ::>
2ms Tms | 100ms
FIFO .
vg:
A B| © 101.3
time 100101 103
Round Robin
A|B|C|A|C A ‘;;f-",'

s

time 2 5 3

11

Comparing FCFS/RR: Scenario 2

Ready Queue

C B A
10ms | 10ms | 10ms

Comparing FCFS/RR: Scenario 2

Ready Queue

C B A
10ms | 10ms | 10ms

FIFO

Avg:
A B C >
o
time 10 20 30
Round Robin
AlBlclAlB|C AlBlclAlB|C A;’g'

e
time 28 29 30

13

What's the optimal
approach if we want to
minimize average

response time?

Shortest Remaining Processing Time

What would it look like if we optimized for completion time? (time to finish, or
time to block).

Idea - SRPT: pick the thread that will finish the most quickly and run it to
completion. This is the optimal solution for minimizing average response time.

15

Evaluating SRPT

Ready Queue
C B A
2ms 1ms | 100ms
FIFO
Avg:
A Bl C | 1013
e
time 100101 103
Round Robin
Avg:
A BIC A|IC A 36.7

time 2 5 103

16

Evaluating SRPT

Ready Queue
C B A
2ms 1ms | 100ms
FIFO
Avg:
A Bl C | 1013
-
time 100101 103
Round Robin
Avg:
AIB|C|A|C A 36.7
e
time 2 5 103
SRPT
Avg:
B| C A 35.7

17

Evaluating SRPT

Ready Queue
S I N
10ms | 10ms | 10ms
FIFO A
vg:
A B C 20
|
time 10 20 30
Round Robin
AlB|C|A|B|C AlB|C|A|B|c| A

e
time 28 29 30

18

Evaluating SRPT

Ready Queue
C B A
10ms [10ms | 10ms
FIFO
A B
o
time 10 20 30
Round Robin
A|B|C|A C AIB|C|IA|B|C
-
time 28 29 30
SRPT
A B
.
time 10 20 30

Avg:
20

Avg:
29

Avg:
20

19

Shortest Remaining Processing Time

SRPT: pick the thread that will finish the most quickly and run it to completion.
This is the optimal solution for minimizing average response time.

What are some problems/challenges with the SRPT approach?

Problem #1: how do we know which one will finish most quickly? (we must be
able to predict the future...)

Problem #2: if we have many short-running threads and one long-running one,
the long one will not get to run (“starvation”)

How can we get close to SRPT but without having to predict the future or
neglect certain threads? 20

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Key Idea: can use past performance to predict future performance.
* Behavior tends to be consistent

* If a thread runs for a long time without blocking, it’s likely to continue running

22

Priority-Based Scheduling

Goal: we want to get close to SRPT, but without having to predict the future, and
without neglecting certain threads.

Idea: let’s make threads have priorities that adjust over time as they run. We'll
have 1 ready queue for each priority, and always run highest-priority threads.

e Overall idea: threads that aren't using much CPU time stay in the higher-
priority queues, threads that are migrate to lower-priority queues.

» After blocking, thread starts in highest priority queue

* If a thread reaches the end of its time slice without blocking it moves to the
next lower queue.

Problem: could still neglect long-running threads!

23

Priority-Based Scheduling

Idea: let’s make threads have priorities that adjust over time as they run. We'll
have 1 ready queue for each priority, and always run highest-priority threads.

Problem: could still neglect long-running threads!

Let’s keep track of recent CPU usage per thread. If a thread hasn’t runin a long
time, its priority goes up. And if it has run a lot recently, priority goes down.
(4.4 BSD Unix used this, ideas carried forward)

* No more neglecting threads: a thread that hasn’t run in a long time will get its
priority increased

* If there are many equally-long threads that want to run, the priorities even out
over time, at a kind of “equilibrium”

24

Key Question: How does the operating system decide which thread to run next?
(e.g. many ready threads). Assume just 1 core.

We discussed 4 main designs:

1.

First-come-first-serve (FIFO / FCFS): keep threads in ready queue, add
threads to the back, run thread from front until completion or blocking.

Round Robin: run thread for one time slice, then add to back of queue if
wants more time

Shortest Remaining Processing Time (SRPT): pick the thread that will
complete or block the soonest and run it to completion.

Priority-Based Scheduling: threads have priorities, and we have one ready
queue per priority. Threads adjust priorities based on time slice usage, or
based on recent CPU usage (4.4 BSD Unix)

25

Plan For Today

* Preemption and Interrupts

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 26

Preemption and Interrupts

On assign5, you’ll implement a dispatcher and scheduler using the Round Robin
approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

27

Timer Demo

// this program runs timer_ interrupt_handler every 0.5 seconds

void timer_interrupt_handler() {
cout << "Timer interrupt occurred!" << endl;
}

int main(int argc, char *argv[]) {
// specify microsecond interval and function to call
timer_init(500000, timer_ interrupt handler);
while (true) {}

. interrupt.cc s

Demo: context-switch-
preemption-buggy.cc

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler.

When the timer handler finishes, interrupts are re-enabled.
// within timer code
// (omitted) timer disables interrupts here

your timer_handler();
// (omitted) timer re-enables interrupts here

Interrupt state is shared (not per-thread).

30

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler.

When the timer handler finishes, interrupts are re-enabled.
// within timer code

// (omitted) timer disables interrupts here
your timer_handler();
// (omitted) timer re-enables interrupts here

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts

disabled and the timer won’t be heard anymore! a

Enabling Interrupts

Solution: manually enable interrupts when a thread is first run.

void other func() {
intr_enable(true);

while (true) {
cout << "Other thread here! Hello." << endl;

On assign5: when a program creates a thread and gives you the function that
thread should run, you will run that thread initially by enabling interrupts first

and then running their specified function.
32

Disabling/Enabling Interrupts

The assignment starter code provides the following to enable or disable
interrupts:

void intr _enable(bool on);

33

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No —if a thread is paused that means when it was previously running, the timer
handler was called and it context-switched to another thread. Therefore, when

that thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

36

On assign5, there are other places where interrupts can cause complications.

* E.g. we could be in the middle of adding to the ready queue, but then the
timer fires and we go to remove something from the ready queue!

* This sounds like a race condition problem we can solve with mutexes!....right?

* Not in this case — because we are the OS, and we implement mutexes! And
they rely on the thread dispatching code in this assighment.

* Therefore, the mechanism for avoiding race conditions is to enable/disable
interrupts when we don’t want to be interrupted (e.g. by timer).

* Interrupts are a shared state — not per-thread.

* We’'re assuming a single-core machine, where disabling interrupts is sufficient
to guarantee no other thread will run.

58

Plan For Today

* Implementing Locks

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 59

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked
* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

60

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked
* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness). (Hint: C++ has a
built-in queue data structure)

61

Lock

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::1lock() {
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {
locked = 90;
} else {
unblockThread(q.remove()); // add to ready queue
}

63

// Instance variables void Lock: :unlock() {

int locked = 0; if (g.empty()) {
ThreadQueue q; locked = 90;
} else {
void Lock::lock() { // add to ready queue
if (!locked) { unblockThread(g.remove());
locked = 1; }
} else { :

Can you think of an example race condition that
could occur if we do not disable interrupts here and

// block/switch to next | two threads lock a single mutex at the same time?
// ready thread

blockThread();

d.add(currentThread);

64

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);

// block/switch to next
// ready thread
blockThread();

void Lock::unlock() {
if (qg.empty()) {
locked = 90;
} else {
// add to ready queue
unblockThread(q.remove());

.

Can you think of an example race condition that
could occur if we do not disable interrupts here and
two threads lock a single mutex at the same time?

Example: thread 1 is in the middle of getting
ownership, but then the timer fires, we switch to
thread 2, and it locks the mutex. Then thread 1
resumes and also gets the mutex.

// Instance variliables

int locked = 0; Possible scenario (2 threads):
ThreadQueue q; 1. Thread #1 locks mutex
void Lock::lock() { 2. Thread #2 locks mutex, adds
intr_enable(false); itself to the queue, enables
if (!locked) { interrupts
locked = 1; aht b hread #2 block
1 else { 3. Right before thread #2 blocks,
q.add(currentThread); thread #1 unlocks the mutex
intr_enable(true); // 22 and unblocks thread #2
) blockThread(); // block/swit 4. Thread #2 then proceeds to
} block.
5. Nobody unblocks thread #2 ®

66

Lock

// Instance variliables

int locked = ©; Instead, we must re-enable
ThreadQueue q; interrupts at the end of lock(). This
void Lock::lock() { means that once a thread unblocks
IntrGuard guard; to acquire the lock, it wakes up
if (!locked) { after blockThread() and re-enables
locked = 1; .
1 else { interrupts.

g.add(currentThread);
blockThread(); // block/switch to next ready thread

67

Lock

// Instance variliables

int locked = ©; IntrGuard is like unique_lock but
ThreadQueue q; for interrupts. It saves the current
void Lock::lock() { interrupt state (enabled/disabled)
IntrGuard guard; when it’s created and turns
it (iigﬁggdz i interrupts off. When it is deleted, it
1 else { I restores interrupts to the saved
g.add(currentThread); state.
blockThread(); // block/swit
)) Key idea: if interrupts are already
disabled when an IntrGuard is
created, it keeps them disabled.

68

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (gq.empty()) {
locked = 9;
} else {
unblockThread(q.remove()); // add to ready queue
}

69

Lock

// Instance variliables

int locked = 0; Problem: what happens when we
ThreadQueue q; switch to the next ready thread?
void Lock::lock() { Interrupts will be disabled!

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

g.add(currentThread);
blockThread(); // block/switch to next ready thread

70

Lock

// Instance variliables

int locked = 0; Problem: what happens when we
ThreadQueue g; switch to the next ready thread?
void Lock::lock() { Interrupts will be disabled!
IntrGuard guard;
1f (iloikgdz i Key Idea: we know that every
} e15ce>c{e I possible way a thread resumes (e.g.
q.add(currentThread); timer), it will re-enable interrupts.
blockThread(); // block/switTherefore, this isn’t a problem.

/1

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
}void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

72

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

73

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
) if (1locked) { if (1locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

74

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

75

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

> })

76

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

77

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { »void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

78

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; # IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

79

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (1locked) {) i (1locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

80

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); # g.add(currentThread);
blockThread(); blockThread();

} }

81

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); # blockThread();

} }

} }

82

£ Enabling/Disabling Interrupts

Thread #1 Thread #2 (blocked)
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

} }

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

83

£ Enabling/Disabling Interrupts

Thread #1
}void Lock: :unlock() {

IntrGuard guard;

if (q.empty()) {
locked = 9;

} else {
unblockThread(qg.remove());

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2 (blocked)
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

84

3 Enabling/Disabling Interrupts

Thread #1 Thread #2 (blocked)
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = 9; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

85

3 Enabling/Disabling Interrupts

Thread #1
void Lock: :unlock() {
IntrGuard guard;

if (qg.empty()) {

locked = 9;
} else {
unblockThread(q.remove());

¥
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

86

£ Enabling/Disabling Interrupts

Thread #1
void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = 9;
} else {
unblockThread(qg.remove());
}

> }

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

87

3 Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

» (assume thread 1 reenables
interrupts when resumed and
disables them when paused)

88

3 Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} # blockThread();
} }
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

89

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }

-}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

90

Plan For Today

* Recap and continuing: Scheduling Lecture 19 takeaway: To
* Preemption and Interrupts implement preemption and
* Implementing Locks locks, we must make sure to

correctly enable and disable
interrupts. Locks consist of a
waiting queue and
redispatching to make

Next time: Virtual Memory threads sleep.

91

