
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 20
Implementing Locks and Condition Variables

😷 masks recommended

2

Topic 3: Multithreading - How
can we have concurrency within a
single process? How does the
operating system support this?

3

CS111 Topic 3: Multithreading, Part 2

Scheduling and
Dispatching

Scheduling
Algorithms

More Scheduling
Algorithms and

Preemption

Implementing
Locks and

Condition Variables

Lecture 17 Lecture 18 This Lecture

assign5: implement your own version of thread, mutex and condition_variable!

Lecture 19

4

Learning Goals
• Understand how interrupts are enabled and disabled when switching between

threads
• See how our understanding of thread dispatching/scheduling allows us to

implement locks

5

Plan For Today
• Recap: Preemption and Interrupts
• Implementing Locks
• Implementing Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

6

Plan For Today
• Recap: Preemption and Interrupts
• Implementing Locks
• Implementing Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

7

Preemption and Interrupts
On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.
• Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.
• Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

8

Interrupts
When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler. (Interrupts are global
state).
When the timer handler finishes, interrupts are re-enabled.
// within timer code

// (omitted) timer disables interrupts here
your_timer_handler();
// (omitted) timer re-enables interrupts here

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

9

Enabling Interrupts
Solution: manually enable interrupts when a thread is first run.
void other_func() {

intr_enable(true);
while (true) {

cout << "Other thread here! Hello." << endl;
}

}

On assign5: when a program creates a thread and gives you the function that
thread should run, you will run that thread initially by enabling interrupts first
and then running their specified function.

10

Disabling/Enabling Interrupts
The assignment starter code provides the following:

void intr_enable(bool on);

There is also a provided variable type IntrGuard that is like a unique_lock but for
interrupts; it disables interrupts when created and restores them back to the
previous state when it is destroyed. This is the method we want to use where
possible.

11

Disabling/Enabling Interrupts
void importantFunc() {

IntrGuard guard;
...

}

IntrGuard is like unique_lock but
for interrupts. It saves the current
interrupt state (enabled/disabled)
when it’s created and turns
interrupts off. When it is deleted, it
restores interrupts to the saved
state.

Key idea: if interrupts are already
disabled when an IntrGuard is
created, it keeps them disabled.

12

Disabling/Enabling Interrupts
void importantFunc() {

intr_enable(false);
...
otherFunc();
...
intr_enable(true);

}

void otherFunc() {
intr_enable(false);
...
intr_enable(true);

}

Oops - interrupts are
re-enabled here,

since otherFunc re-
enabled them!

13

Interrupts
What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No – if a thread is paused that means when it was previously running, the timer
handler was called and it context-switched to another thread. Therefore, when
that thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

14

Enabling/Disabling Interrupts
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
...
context_switch(...);

}

When the timer fires, we context
switch to another thread

15

Enabling/Disabling Interrupts
int main(...) {

...
while (true) {

cout << "I am the main thread"
<< endl;

}
}

void timer_interrupt_handler() {
...
context_switch(...);

}

When we are switched back to, we
resume right here! Then we exit the
timer handler and resume the
thread.

16

Yield
Another trigger that may switch threads is a function you will implement called
yield.
• Yield is an assign5 function that can be called by a thread to give up the CPU

voluntarily even though it can still do work (how considerate!)
• When you implement yield, the same idea applies for interrupt re-enabling as

for the timer handler.

17

Interrupts
On assign5, there are other places where interrupts can cause complications.
• E.g. we could be in the middle of adding to the ready queue, but then the

timer fires and we go to remove something from the ready queue!
• This sounds like a race condition problem we can solve with mutexes!....right?
• Not in this case – because we are the OS, and we implement mutexes! And

they rely on the thread dispatching code in this assignment.
• Therefore, the mechanism for avoiding race conditions is to enable/disable

interrupts when we don’t want to be interrupted (e.g. by timer).
• Interrupts are a global state – not per-thread.
• We’re assuming a single-core machine, where disabling interrupts is sufficient

to guarantee no other thread will run.

18

Plan For Today
• Recap: Preemption and Interrupts
• Implementing Locks
• Implementing Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

19

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

20

Implementing Locks
Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
• Track whether it is locked / unlocked
• The lock “owner” (if any) – perhaps combine with first bullet
• A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness). (Hint: C++ has a
built-in queue data structure)

21

Lock
1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

22

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove()); // add to ready queue
}

}

23

Mutex
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);

// block/switch to next
// ready thread
blockThread();

}
}

void Lock::unlock() {
if (q.empty()) {

locked = 0;
} else {

// add to ready queue
unblockThread(q.remove());

}
}

Can you think of an example race condition that
could occur if we do not disable interrupts here and
two threads lock a single mutex at the same time?

24

Mutex
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
if (!locked) {

locked = 1;
} else {

q.add(currentThread);

// block/switch to next
// ready thread
blockThread();

}
}

void Lock::unlock() {
if (q.empty()) {

locked = 0;
} else {

// add to ready queue
unblockThread(q.remove());

}
}

Can you think of an example race condition that
could occur if we do not disable interrupts here and
two threads lock a single mutex at the same time?

Example: thread 1 is in the middle of getting
ownership, but then the timer fires, we switch to
thread 2, and it locks the mutex. Then thread 1
resumes and also gets the mutex.

25

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
intr_enable(false);
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
intr_enable(true); // ??
blockThread(); // block/switch to next ready thread

}
}

Possible scenario (2 threads):
1. Thread #1 locks mutex
2. Thread #2 locks mutex, adds

itself to the queue, enables
interrupts

3. Right before thread #2 blocks,
thread #1 unlocks the mutex
and unblocks thread #2

4. Thread #2 then proceeds to
block.

5. Nobody unblocks thread #2 L

26

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

Instead, we must re-enable
interrupts at the end of lock(). This
means that once a thread unblocks
to acquire the lock, it wakes up
after blockThread() and re-enables
interrupts.

27

Unlock
1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove()); // add to ready queue
}

}

28

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

Problem: what happens when we
switch to the next ready thread?
Interrupts will be disabled!

29

Lock
// Instance variables
int locked = 0;
ThreadQueue q;

void Lock::lock() {
IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread(); // block/switch to next ready thread

}
}

Problem: what happens when we
switch to the next ready thread?
Interrupts will be disabled!

Key Idea: we know that every
possible way a thread resumes (e.g.
timer), it will re-enable interrupts.
Therefore, this isn’t a problem.

30

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔓

31

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔓

32

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔓

33

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

34

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

35

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

36

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

37

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

38

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

39

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

40

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

41

Enabling/Disabling Interrupts
Thread #1
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2 (blocked)
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

42

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2 (blocked)
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

43

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2 (blocked)
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

44

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

45

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

46

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

47

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
OFF🔒

48

Enabling/Disabling Interrupts
Thread #1
void Lock::unlock() {

IntrGuard guard;
if (q.empty()) {

locked = 0;
} else {

unblockThread(q.remove());
}

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::lock() {

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

q.add(currentThread);
blockThread();

}
}

Interrupts
ON🔒

49

Plan For Today
• Recap: Preemption and Interrupts
• Implementing Locks
• Implementing Condition Variables

cp -r /afs/ir/class/cs111/lecture-code/lect19 .

50

Implementing Condition Variables
Now that we understand how thread dispatching/scheduling works, we can
write our own condition variable implementation! Condition variables need to
block threads (functionality the dispatcher / scheduler provides).

wait(mutex& m)
notify_one()
notify_all()

What does the design of a condition variable look like? What state does it
need?

51

wait
1. Should atomically put the thread to sleep and unlock the specified lock
2. When that thread wakes up, it should reacquire the specified lock before

returning

52

notify_one and notify_all
notify_one
• Should wake up/unblock the first waiting thread (we are guaranteeing FIFO in

our implementation)

notify_all
• Should wake up/unblock all waiting threads

For both: if no-one waiting, does nothing.

53

Plan For Today
• Recap: Preemption and Interrupts
• Implementing Locks
• Implementing Condition Variables

Next time: Virtual Memory

Lecture 20 takeaway: Locks
consist of a waiting queue
and redispatching to make
threads sleep. Condition
variables also need to make
threads sleep until they are
notified.

