CS111, Lecture 20

Implementing Locks and Condition Variables

— This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
& :> Creative Commons Attribution 2.5 License. All rights reserved.
N 4

- m a S kS re CO m m e n d e\d—) Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.

NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared, 1
uploaded, or distributed. (without expressed written permission)

Topic 3: Multithreading - How
can we have concurrency within a

single process? How does the
operating system support this?

CS111 Topic 3: Multithreading, Part 2

More Scheduling Implementing
Algorithms and Locks and
Preemption Condition Variables

Scheduling and Scheduling
Dispatching Algorithms

Lecture 17 Lecture 18 Lecture 19 This Lecture

assignd: implement your own version of thread, mutex and condition_variable!

Learning Goals

* Understand how interrupts are enabled and disabled when switching between
threads

» See how our understanding of thread dispatching/scheduling allows us to
implement locks

Plan For Today

* Recap: Preemption and Interrupts
* Implementing Locks
* Implementing Condition Variables

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 5

Plan For Today

* Recap: Preemption and Interrupts

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 6

Preemption and Interrupts

On assign5, you’ll implement a dispatcher with scheduling using the Round
Robin approach.

* Preemptive: threads can be kicked off in favor of others (after time slice)

To implement this, we’ve provided a timer implementation that lets you run
code every X microseconds.

* Fires a timer interrupt at specified interval

Idea: we can use the timer handler to trigger a context switch!
(For simplicity, on assign5 we’ll always do a context switch when the timer fires)

When the timer handler is called, it’s called with (all) interrupts disabled. Why?
To avoid a timer handler interrupting a timer handler. (Interrupts are global
state).

When the timer handler finishes, interrupts are re-enabled.
// within timer code

// (omitted) timer disables interrupts here
your timer_handler();
// (omitted) timer re-enables interrupts here

Problem: because we context switch in the middle of the timer handler, when
we start executing another thread for the first time, we will have interrupts
disabled and the timer won’t be heard anymore!

Enabling Interrupts

Solution: manually enable interrupts when a thread is first run.

void other func() {
intr_enable(true);

while (true) {
cout << "Other thread here! Hello." << endl;

On assign5: when a program creates a thread and gives you the function that
thread should run, you will run that thread initially by enabling interrupts first

and then running their specified function.
9

Disabling/Enabling Interrupts

The assignment starter code provides the following:

void intr _enable(bool on);

There is also a provided variable type IntrGuard that is like a unique_lock but for
interrupts; it disables interrupts when created and restores them back to the

previous state when it is destroyed. This is the method we want to use where
possible.

10

Disabling/Enabling Interrupts

void importantFunc() {

IntrGuard guard; IntrGuard is like unique_lock but
e for interrupts. It saves the current
} interrupt state (enabled/disabled)

when it’s created and turns
interrupts off. When it is deleted, it
restores interrupts to the saved
state.

Key idea: if interrupts are already
disabled when an IntrGuard is
created, it keeps them disabled.

11

Disabling/Enabling Interrupts

void importantFunc() {
intr_enable(false);

otherFunc();

intr_enable(true);

}

void otherFunc() {
intr_enable(false);

intr_enable(true);

Oops - interrupts are
re-enabled here,
since otherFunc re-
enabled them!

12

What about when we switch to a thread that we’ve already run before? Do we
need to enable interrupts there too?

No —if a thread is paused that means when it was previously running, the timer
handler was called and it context-switched to another thread. Therefore, when

that thread resumes, it will resume at the end of the timer handler, where
interrupts are re-enabled.

13

Enabling/Disabling Interrupts

int main(...) {

while (true) {

cout << "I am the main thread"”

<< endl;

}
¥

void timer_interrupt_handler() {

context_switch(...);

¥

When the timer fires, we context

switch to another thread

14

Enabling/Disabling Interrupts

int main(...) {

while (true) {

cout << "I am the main thread"”

<< endl;

}
¥

void timer_interrupt_handler() {

context_switch(...); -
}

When we are switched back to, we

resume right here! Then we exit the
timer handler and resume the
thread.

15

Another trigger that may switch threads is a function you will implement called
yield.

* Yield is an assign5 function that can be called by a thread to give up the CPU
voluntarily even though it can still do work (how considerate!)

 When you implement yield, the same idea applies for interrupt re-enabling as
for the timer handler.

16

On assign5, there are other places where interrupts can cause complications.

* E.g. we could be in the middle of adding to the ready queue, but then the
timer fires and we go to remove something from the ready queue!

* This sounds like a race condition problem we can solve with mutexes!....right?

* Not in this case — because we are the OS, and we implement mutexes! And
they rely on the thread dispatching code in this assighment.

* Therefore, the mechanism for avoiding race conditions is to enable/disable
interrupts when we don’t want to be interrupted (e.g. by timer).

* Interrupts are a global state — not per-thread.

* We’'re assuming a single-core machine, where disabling interrupts is sufficient
to guarantee no other thread will run.

17

Plan For Today

* Implementing Locks

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 18

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked
* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

19

Implementing Locks

Now that we understand how thread dispatching/scheduling works, we can
write our own mutex implementation! Mutexes need to block threads
(functionality the dispatcher / scheduler provides).

What does the design of a lock look like? What state does it need?
* Track whether it is locked / unlocked
* The lock “owner” (if any) — perhaps combine with first bullet

* A list of threads waiting to get this lock

We can keep a queue of threads
(for fairness). (Hint: C++ has a
built-in queue data structure)

20

Lock

1. If this lock is unlocked, mark it as locked by the current thread
2. Otherwise, add the current thread to the back of the waiting queue

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::1lock() {
if (!'locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread(); // block/switch to next ready thread

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
if (q.empty()) {
locked = 90;
} else {
unblockThread(q.remove()); // add to ready queue
}

22

// Instance variables void Lock: :unlock() {

int locked = 0; if (g.empty()) {
ThreadQueue q; locked = 90;
} else {
void Lock::lock() { // add to ready queue
if (!locked) { unblockThread(g.remove());
locked = 1; }
} else { :

Can you think of an example race condition that
could occur if we do not disable interrupts here and

// block/switch to next | two threads lock a single mutex at the same time?
// ready thread

blockThread();

d.add(currentThread);

23

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::lock() {
if (!locked) {
locked = 1;
} else {
g.add(currentThread);

// block/switch to next
// ready thread
blockThread();

void Lock::unlock() {
if (qg.empty()) {
locked = 90;
} else {
// add to ready queue
unblockThread(q.remove());

.

Can you think of an example race condition that
could occur if we do not disable interrupts here and
two threads lock a single mutex at the same time?

Example: thread 1 is in the middle of getting
ownership, but then the timer fires, we switch to
thread 2, and it locks the mutex. Then thread 1
resumes and also gets the mutex.

// Instance variliables

int locked = 0; Possible scenario (2 threads):
ThreadQueue q; 1. Thread #1 locks mutex
void Lock::lock() { 2. Thread #2 locks mutex, adds
intr_enable(false); itself to the queue, enables
if (!locked) { interrupts
locked = 1; aht b hread #2 block
1 else { 3. Right before thread #2 blocks,
q.add(currentThread); thread #1 unlocks the mutex
intr_enable(true); // 22 and unblocks thread #2
) blockThread(); // block/swit 4. Thread #2 then proceeds to
} block.
5. Nobody unblocks thread #2 ®

25

Lock

// Instance variliables

int locked = ©; Instead, we must re-enable
ThreadQueue q; interrupts at the end of lock(). This
void Lock::lock() { means that once a thread unblocks
IntrGuard guard; to acquire the lock, it wakes up
if (!locked) { after blockThread() and re-enables
locked = 1; .
1 else { interrupts.

g.add(currentThread);
blockThread(); // block/switch to next ready thread

26

1. If no-one is waiting for this lock, mark it as unlocked
2. Otherwise, keep it locked, but unblock the next waiting thread

// Instance variables
int locked = ©;
ThreadQueue q;

void Lock::unlock() {
IntrGuard guard;
if (gq.empty()) {
locked = 9;
} else {
unblockThread(q.remove()); // add to ready queue
}

27

Lock

// Instance variliables

int locked = 0; Problem: what happens when we
ThreadQueue q; switch to the next ready thread?
void Lock::lock() { Interrupts will be disabled!

IntrGuard guard;
if (!locked) {

locked = 1;
} else {

g.add(currentThread);
blockThread(); // block/switch to next ready thread

28

Lock

// Instance variliables

int locked = 0; Problem: what happens when we
ThreadQueue g; switch to the next ready thread?
void Lock::lock() { Interrupts will be disabled!
IntrGuard guard;
1f (iloikgdz i Key Idea: we know that every
} e15ce>c{e I possible way a thread resumes (e.g.
q.add(currentThread); timer), it will re-enable interrupts.
blockThread(); // block/switTherefore, this isn’t a problem.

29

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
}void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

30

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

31

&' Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
) if (1locked) { if (1locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

32

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

33

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

> })

34

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

35

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { »void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

36

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; # IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

37

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (1locked) {) i (1locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

38

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); # g.add(currentThread);
blockThread(); blockThread();

} }

39

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); # blockThread();

} }

} }

40

£ Enabling/Disabling Interrupts

Thread #1 Thread #2 (blocked)
void Lock::1lock() { void Lock::1lock() {

IntrGuard guard; IntrGuard guard;

if (!locked) { if (!locked) {
locked = 1; locked = 1;

} else { } else {
g.add(currentThread); g.add(currentThread);
blockThread(); blockThread();

} }

} }

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

41

£ Enabling/Disabling Interrupts

Thread #1
}void Lock: :unlock() {

IntrGuard guard;

if (q.empty()) {
locked = 9;

} else {
unblockThread(qg.remove());

}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2 (blocked)
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

42

3 Enabling/Disabling Interrupts

Thread #1 Thread #2 (blocked)
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = 9; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

43

3 Enabling/Disabling Interrupts

Thread #1
void Lock: :unlock() {
IntrGuard guard;

if (qg.empty()) {

locked = 9;
} else {
unblockThread(q.remove());

¥
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

44

£ Enabling/Disabling Interrupts

Thread #1
void Lock::unlock() {
IntrGuard guard;
if (q.empty()) {
locked = 9;
} else {
unblockThread(qg.remove());
}

> }

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

Thread #2
void Lock::1lock() {
IntrGuard guard;
if (!locked) {
locked = 1;
} else {
g.add(currentThread);
blockThread();

45

3 Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }
}

» (assume thread 1 reenables
interrupts when resumed and
disables them when paused)

46

3 Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} # blockThread();
} }
}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

47

£ Enabling/Disabling Interrupts

Thread #1 Thread #2
void Lock::unlock() { void Lock::1lock() {
IntrGuard guard; IntrGuard guard;
if (g.empty()) { if (!locked) {
locked = ©; locked = 1;
} else { } else {
unblockThread(qg.remove()); g.add(currentThread);
} blockThread();
} }

-}

(assume thread 1 reenables
interrupts when resumed and
disables them when paused)

48

Plan For Today

* Implementing Condition Variables

cp -r /afs/ir/class/cslll/lecture-code/lectl9 . 49

Implementing Condition Variables

Now that we understand how thread dispatching/scheduling works, we can
write our own condition variable implementation! Condition variables need to
block threads (functionality the dispatcher / scheduler provides).

wait(mutex& m)
notify_one()
notify_all()

What does the design of a condition variable look like? What state does it
nheed?

50

1. Should atomically put the thread to sleep and unlock the specified lock

2. When that thread wakes up, it should reacquire the specified lock before
returning

51

notify_one and notify_all

notify_one

 Should wake up/unblock the first waiting thread (we are guaranteeing FIFO in
our implementation)

notify_all
» Should wake up/unblock all waiting threads

For both: if no-one waiting, does nothing.

52

Plan For Today

* Recap: Preemption and Interrupts Lecture 20 takeaway: | ocks
* Implementing Locks consist of a waiting queue
* Implementing Condition Variables and redispatching to make

threads sleep. Condition
variables also need to make
threads sleep until they are
notified.

Next time: Virtual Memory

53

