
[6 points] When two or more threads are blocked on a call to mutex::lock, any one of
them might be selected to acquire the lock once the mutex becomes available. Restated,
the mutex isn’t obligated to maintain any sort of FIFO queue to ensure the thread waiting
longer than any other is chosen first.

A strong mutex, or a smutex, ensures that blocked threads are woken up in the same
order they are blocked. There are many smutex implementations, and one that relies on
a queue of condition_variable_anys is presented below (interface on the left,
implementation on the right).

// smutex.h
class smutex {
 public:
 void lock();
 void unlock();

 private:
 mutex m;
 list<condition_variable_any *> queue;
};

Study the implementation of the smutex
methods and answer the following questions:

// smutex.cc
void smutex::lock() {
 condition_variable_any cv;
 unique_lock<mutex> ul(m);
 queue.push_back(&cv);
 while (queue.front() != &cv) {
 cv.wait(m);
 }
 queue.pop_front();
}

void smutex::unlock() {
 unique_lock<mutex> ul(m);
 if (!queue.empty()) {
 queue.front()->notify_all();
 }
}

• [2 points] Does the implementation guarantee that a thread calling
smutex::lock before any others gets the lock on the smutex first? Why or why
not? 	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

• [2 points] In unlock when the code calls queue.front()->notify_all(),
could we instead notify just one waiting thread at that point instead of all of them
without impacting functionality? Very briefly justify your answer. 	

	

• [2 points] Can the queue.pop_front() line in smutex::lock() be moved
so that it’s the last line in smutex::unlock() instead? Why or why not? 	

