
1

This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under
Creative Commons Attribution 2.5 License. All rights reserved.

Based on slides and notes created by John Ousterhout, Jerry Cain, Chris Gregg, and others.
NOTICE RE UPLOADING TO WEBSITES: This content is protected and may not be shared,

uploaded, or distributed. (without expressed written permission)

CS111, Lecture 10
Pipes

😷 masks strongly
recommended

2

CS111 Topic 2: Multiprocessing

Multiprocessing
Introduction

Managing
processes and
running other

programs

Inter-process
communication

with pipes

Lecture 8 Lecture 9 Today / Lecture 11

assign3: implement your own shell!

Key Question: How can our program create and interact with other programs? How
does the operating system manage user programs?

3

Learning Goals
• Learn about pipe and how we can create a communication channel between

processes
• Understand how file descriptors are duplicated across processes
• Learn the steps to implement pipelines in our shell

4

Plan For Today
• Recap: fork, waitpid, execvp and our first shell
• Shell Feature Demo: pipes
• pipe() system call
• Example: Parent-child pipe

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

5

Plan For Today
• Recap: fork, waitpid, execvp and our first shell
• Shell Feature Demo: pipes
• pipe() system call
• Example: Parent-child pipe

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

6

Our Goal: Shell
A shell is a program that prompts the user for a command to run, runs that
command, waits for the command to finish, and then prompts the user again.
while (true) {

 char *user_command = … // user input

 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // run user’s command in the child, then terminate

 }

 // parent waits for child before continuing

}

execvp

waitpid

7

waitpid()
A system call that a parent can call to wait for its child to exit:

pid_t waitpid(pid_t pid, int *status, int options);

• pid: the PID of the child to wait on, or -1 to wait for any child
• status: where to put info about the child's termination (or NULL)
• options: optional flags to customize behavior (always 0 for now)
• the function returns when the specified child process exits
• returns the PID of the child that exited, or -1 on error (e.g. no child to wait on)
• If the child process has already exited, this returns immediately - otherwise, it blocks
• also cleans up the state of the child that was waited on

8

Make sure to clean up after your zombie
children.
(wait, what?)

9

execvp()
execvp is a function that lets us run another program in the current process.

int execvp(const char *path, char *argv[])

It runs the executable at the given path, completely cannibalizing the current process.
• If successful, execvp never returns in the calling process
• If unsuccessful, execvp returns -1
• argv is the NULL-terminated arguments array to pass to the new program’s main

function.
• path should generally be argv[0] for our purposes (since program name is first argv

argument)

Key idea: a parent can still wait on a child that calls execvp

10

Implementing a Shell
A shell is essentially a program that repeats asking the user for a command and
running that command

How do we run a command entered by the user?
1. Call fork to create a child process
2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid

For assign3, you’ll use this pattern to build your own shell, stsh ("Stanford shell")
with various functionality of real Unix shells.

11

First Shell Solution
void runPipeline(const pipeline& p) {
 command cmd = p.commands[0];
 // Step 1: fork off a child process to run the command
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // Step 2: if we are the child, execute the command
 execvp(cmd.argv[0], cmd.argv);
 // If the child gets here, there was an error
 throw STSHException(string(cmd.argv[0]) + ": Command not found.");
 }
 // Step 3: if we are the parent, wait for the child
 waitpid(pidOrZero, NULL, 0);
} 1. Call fork to create a child process

2. In the child, call execvp with the command to execute
3. In the parent, wait for the child with waitpid

12

More About fork()
When you fork off a child process, the child will keep running like any other
program, until it eventually returns from main (or exits using exit()).
• E.g. if you call fork() in a helper function (which is allowed), if the child process

does not e.g. call exit in that helper function when it’s done, it will also return
from the function and continue executing.
• We must be careful to ensure that the child doesn’t accidentally run code

intended only for the parent!

13

Terminating the Child Process
void runPipeline(const pipeline& p) {
 command cmd = p.commands[0];
 // Step 1: fork off a child process to run the command
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) {
 // Step 2: if we are the child, execute the command
 execvp(cmd.argv[0], cmd.argv);
 // If the child gets here, there was an error
 throw STSHException(string(cmd.argv[0]) + ": Command not found.");
 }
 // Step 3: if we are the parent, wait for the child
 waitpid(pidOrZero, NULL, 0);
} assign3 starter terminates any child process that throws an

exception. If we omit this line and execvp fails, the child will continue
executing – calling waitpid, returning back to main, itself then also
running the prompting code intended only for the parent! (DEMO)

14

Plan For Today
• Recap: fork, waitpid, execvp and our first shell
• Shell Feature Demo: pipes
• pipe() system call
• Example: Parent-child pipe

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

15

Additional Shell Features
There are many more features from full shells that our shell could support:
• Running commands in the background (put ”&” after command)
• Ctl-c to terminate a program
• Chaining multiple commands together (a “pipeline”)
• Saving a command’s output to a file, or reading a command’s input from a file

16

Additional Shell Features
There are many more features from full shells that our shell could support:
• Running commands in the background (put ”&” after command)
• Ctl-c to terminate a program
• Chaining multiple commands together (a “pipeline”)
• Saving a command’s output to a file, or reading a command’s input from a file

(next time)

You’ll get to fully implement both features on assign3!

17

Demo: shell pipelines

Key Unix idea: chaining the output (STDOUT) of one command to be the input (STDIN)
of another.
Each command doesn’t need to know it’s part of a pipeline!

18

How do we implement shell pipelines?
Let’s focus on two-command pipelines for now. How can we implement this?
1. Spawn 2 child processes (1 per command)
2. Create a “magic portal” that allows data to be sent between two processes
3. Connect one end of that portal to the first child’s STDOUT, and the other end

to the second child’s STDIN
First child Second child

STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

19

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?
2. How do we share this “magic portal” between processes?
3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?

First child Second child
STDIN STDOUT STDERR STDIN STDOUT STDERR

Terminal “Magic portal” Portal image unmodified, CC credit

https://pixexid.com/image/a-mesmerizing-cgi-render-of-a-wormhole-bending-space-and-time-surrounded-by-bri-d2hga3nz

20

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

21

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

22

Plan For Today
• Recap: fork, waitpid, execvp and our first shell
• Shell Feature Demo: pipes
• pipe() system call
• Example: Parent-child pipe

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

23

“Magic Portal”: pipe() System Call
int pipe(int fds[]);

The pipe system call gives us back two file descriptors, where everything written
to one can be read from the other.
• Specifically: populates the 2-element array fds with the two file descriptors.

Everything written to fds[1] can be read from fds[0]. Tip: you learn to read
before you learn to write (read = fds[0], write = fds[1]).
• Returns 0 on success, or -1 on error.

Imagine: like opening the same file twice, once for reading and once for writing.

Why doesn’t it give back 1 read/write file descriptor? Can be at different
places reading vs. writing.

24

pipe() Within 1 Process
static const char * kPipeMessage = "this message is coming via a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);

 // Write message to pipe (assuming all bytes written immediately)
 write(fds[1], kPipeMessage, strlen(kPipeMessage) + 1);
 close(fds[1]);

 // Read message from pipe (assume all bytes read immediately)
 char receivedMessage[strlen(kPipeMessage) + 1];
 read(fds[0], receivedMessage, sizeof(receivedMessage));
 close(fds[0]);
 printf("Message read: %s\n", receivedMessage);

 return 0;
}

$./pipe-demo
Message read: this message is coming via a pipe.

25

How do we implement shell pipelines?
Three key questions:
1. What the heck is a “magic portal” and how do we create one?

The pipe() system call

2. How do we share this “magic portal” between processes?
Relying on cloning that happens on fork(), plus a new property of execvp

3. How do we connect a process’s STDIN/STDOUT to this ”magic portal”?
The dup2() system call

26

pipe() and fork()
Key idea: a pipe can facilitate parent-child communication because file
descriptors are duplicated on fork(). Thus, a pipe created prior to fork() will
also be accessible in the child!

How does this file descriptor duplication work?

27

File Descriptor Table
The OS maintains a “Process Control Block” for each process containing info
about it. This includes a process’s file descriptor table, an array of info about
open files/resources for this process.
Key idea: a file descriptor is an index into that process’s file descriptor table!

Process Control Block

0 1 2 3 4 …

28

File Descriptor Table
Key idea: a file descriptor is an index into that process’s file descriptor table.
• An entry in a file descriptor table is really a pointer to an entry in another

global table, the open file table.
• The open file table is one array of information about open files/resources

across all processes.

0 1 2 3 … …

Process A control block

0 1 2 3 … …

Process B control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

mode: w
refcount: 1
Cursor:
…(script.txt)

…Open file table

29

File Descriptor Table
An open file table entry contains various information, such as:
• mode: e.g., read, write, read+write
• Reference count: the number of file descriptor table entries pointing to it
• Cursor: tracking where in the file it currently is

0 1 2 3 … …

Process A control block

0 1 2 3 … …

Process B control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

mode: w
refcount: 1
Cursor:
…(script.txt)

…Open file table

30

Open File Table
Calling open creates a new open file table entry, and a new file descriptor index
points to it.

int fd = open("file.txt", O_RDONLY); // 3

0 1 2 3 … …

Process A control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
…(file.txt)

…Open file table

31

Open File Table
Calling pipe creates 2 new open file table entries, and 2 new file descriptor
indexes point to them. The open file table entries are linked behind the scenes.
int fds[2];
pipe(fds); // afterwards, fds[0] = 3, fds[1] = 4

0 1 2 3 4 …

Process A control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(pipe read end)

mode: w
refcount: 1
Cursor:
…(pipe write end)

…Open file table

32

Open File Table
Calling fork means the OS creates a new Process Control Block with a copy of
parent’s FD table; so, all file descriptor indexes point to the same place!
int fds[2];
pipe(fds); // afterwards, fds[0] = 3, fds[1] = 4
pid_t pidOrZero = fork();

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
Cursor:
…(terminal in)

mode: w
refcount: 1
Cursor:
…(terminal out)

mode: w
refcount: 1
Cursor:
..(terminal error)

mode: r
refcount: 1
Cursor:
...(pipe read end)

mode: w
refcount: 1
Cursor:
…(pipe write end)

…Open file table

33

0 1 2 3 4 …

Child process control block

Open File Table
Calling fork means the OS creates a new Process Control Block with a copy of
parent’s FD table; so, all file descriptor indexes point to the same place!
int fds[2];
pipe(fds); // afterwards, fds[0] = 3, fds[1] = 4
pid_t pidOrZero = fork();

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 2
Cursor:
…(terminal in)

mode: w
refcount: 2
Cursor:
…(terminal out)

mode: w
refcount: 2
Cursor:
..(terminal error)

mode: r
refcount: 2
Cursor:
...(pipe read end)

mode: w
refcount: 2
Cursor:
…(pipe write end)

…Open file table

34

Reference Count
• When we call close, that makes the file descriptor index no longer point to an

open file table entry, and the old open file table entry’s ref count is
decremented.
• When open file table entry’s ref count == 0, it’s deleted

35

Practice: Reference Count
a) If a process opens a file, and then spawns a child process, what will the

reference count be for the corresponding open file table entry?
b) What about if a process spawns a child process and then opens a file?

Respond on PollEv: pollev.com/cs111fall23
or text CS111FALL23 to 22333 once to join.

36

37

Practice: Reference Count
a) If a process opens a file, and then spawns a child process, what will the

reference count be for the corresponding open file table entry? 2.
b) What about if a process spawns a child process and then opens a file? 1.

(a) explains why we must close this file in both the parent and child.
int fd = open(…);
pid_t pidOrZero = fork();
if (pidOrZero == 0) {
 …
 close(fd);
} else {
 …
 close(fd);
}

38

pipe()
pipe can allow processes to communicate!
• When fork is called, everything is cloned – even the file descriptors, which are

replicated in the child process. This means if the parent creates a pipe and
then calls fork(), both processes can use the pipe!
• E.g. the parent can write to the "write" end and the child can read from the

"read" end (or vice versa)
• Key Idea: read() blocks until:

a) At least 1 byte is available, OR
b) “End of file” is reached (for pipe, means all pipe write ends are closed, so no more can

be written to it)

39

Plan For Today
• Recap: fork, waitpid, execvp and our first shell
• Shell Feature Demo: pipes
• pipe() system call
• Example: Parent-child pipe

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

40

Demo: Parent Child Pipe
Let’s write a program where the parent sends a predetermined message to the
child, which prints it out.

41

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

… … …Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 ...
}

42

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

… … …Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 ...
}

43

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds); // here, fds[0] = 3, fds[1] = 4
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 ...
}

44

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

mode: r
refcount: 1
(terminal in)

mode: w
refcount: 1
(terminal out)

mode: w
refcount: 1
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds); // here, fds[0] = 3, fds[1] = 4
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 ...
}

45

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds); // here, fds[0] = 3, fds[1] = 4
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 ...
}

46

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds); // here, fds[0] = 3, fds[1] = 4
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 ...
}

47

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 2
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

48

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

49

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

50

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 2
(pipe write end)

…Open file table

...
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

51

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

...
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

52

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

...
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

53

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

mode: w
refcount: 1
(pipe write end)

…Open file table

...
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 } ...

54

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

… …Open file table

...
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 } ...

55

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

… …Open file table

...
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 } ...

56

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

mode: r
refcount: 1
(pipe read end)

… …Open file table

...
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 } ...

57

Demo: Parent Child Pipe

0 1 2 3 4 …

Parent process control block

0 1 2 3 4 …

Child process control block

mode: r
refcount: 2
(terminal in)

mode: w
refcount: 2
(terminal out)

mode: w
refcount: 2
(terminal error)

… … …Open file table

...
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 } ...

58

Demo: Parent Child Pipe
static const char * kPipeMessage = "Hello, this message is coming through a pipe.";
int main(int argc, char *argv[]) {
 int fds[2];
 pipe(fds);
 size_t bytesSent = strlen(kPipeMessage) + 1;
 pid_t pidOrZero = fork();
 if (pidOrZero == 0) { // In the child, we only read from the pipe
 close(fds[1]);
 char buffer[bytesSent];
 read(fds[0], buffer, sizeof(buffer));
 close(fds[0]);
 printf("Message from parent: %s\n", buffer);
 return 0;
 }
 // In the parent, we only write to the pipe (assume everything is written)
 close(fds[0]);
 write(fds[1], kPipeMessage, bytesSent);
 close(fds[1]);
 waitpid(pidOrZero, NULL, 0);
 return 0;
}

59

Summary
• Both the parent and the child must close the pipe FDs when they are done

with them.
• If someone tries calling read from a pipe and no data has been written, it will

block until some data is available (or the pipe write end is closed everywhere).

64

Recap
• Recap: fork, waitpid, execvp and

our first shell
• Shell Feature Demo: pipes
• pipe() system call
• Example: Parent-child pipe

Next time: how to connect pipes
to STDIN/STDOUT, and how to
implement file redirection

cp -r /afs/ir/class/cs111/lecture-code/lect10 .

Lecture 10 takeaway: Pipes are
sets of file descriptors that let us
read/write. We can share pipes
with child processes to send
arbitrary data back and forth.

